

MallaReddyEngineeringCollege
AnUGCAutonomousInstitution,ApprovedbyAICTE,NewDelhi&Affiliated to

JNTUH, Hyderabad, Accredited by NAAC with ‘A++’ Grade (3rd Cycle),
Maisammaguda

(H),Medchal-Malkajgiri,SecunderabadTelangana–500100 www.mrec.ac.in

Department of Information Technology

II B.TECH I SEM (A.Y.2024-25)

LectureNotes

On

C0510-DataStructures

http://www.mrec.ac.in/

2022-23

Onwards

(MR22)

MALLAREDDYENGINEERINGCOLLEGE
(Autonomous)

B.Tech.

IIISemester

Code: C0510
DataStructures

L T P

Credits:3 3 - -

Prerequisites:Acourseon“ProgrammingforProblemSolving“

CourseObjectives:

• Exploringbasicdatastructuressuchaslinkedlist,stacksandqueues.

• Introducesavarietyofdatastructuressuchasdictionariesandhashtables

• Tolearnnonlineardatastructuresi.e.Binarysearchtreesandheightbalancedtrees.

• Tounderstandthegraphtraversalalgorithmsandheapsort.

• Introducesthepatternmatchingandtriesalgorithms

Module-I: [10Periods]

Introduction to Data Structures, abstract data types, Linear list – singly linked list

implementation,insertion,deletionandsearching operationsonlinearlist,Stacks-Operations,array

and linked representations of stacks, stack applications, Queues-operations, array and linked

representations.
Module-II: [09Periods]

Dictionaries:linearlistrepresentation,skiplistrepresentation,operations-insertion,deletionand

searching.

HashTableRepresentation:hashfunctions,collisionresolution-separatechaining,open

addressing-linearprobing,quadraticprobing,doublehashing,rehashing,extendiblehashing.

Module-III: [10Periods]

SearchTrees:BinarySearchTrees,Definition,Implementation,Operations-Searching,

InsertionandDeletion,AVLTrees,Definition,HeightofanAVLTree,Operations–Insertion,

Deletion and Searching, Definition and example of Red–Black, Splay Trees.

Module-IV: [10Periods]

Graphs:GraphImplementationMethods.GraphTraversalMethods.

Sorting:MaxHeap,MinHeap,HeapSort.ExternalSorting:Modelforexternalsorting,Mergesort.

Module-V: [09Periods]

PatternMatchingandTries: Patternmatching algorithms-Bruteforce,theBoyer–
Moorealgorithm,theKnuth-Morris-Prattalgorithm,StandardTries,CompressedTries,Suffix tries.

Text Books:

1. JeanPaulTremblay,PaulGSorenson,“AnIntroductiontoDataStructureswithApplications”,

Tata McGraw Hills, 2nd Edition, 1984.

2. RichardF.Gilberg,BehrouzA.Forouzan,“DataStructures:A
3. PseudocodeapproachwithC",Thomson(India),2ndEdition,2004.

References:

1. Horowitz,Ellis,Sahni,Sartaj,Anderson-Freed,Susan,“FundamentalsofDataStructurein

C”, University Press (India), 2nd Edition, 2008.

2. A.K.Sharma,“DatastructuresusingC”,Pearson,2ndEdition,June,2013.
3. R.Thareja,“DataStructuresusingC”,OxfordUniversityPress,2ndEdition,2014.

E-Resources:

1. http://gvpcse.azurewebsites.net/pdf/data.pdf

2. http://www.sncwgs.ac.in/wp-content/uploads/2015/11/Fundamental-Data-Structures.pdf

3. http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv247-Page1.htm

4. http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qw

H9xY7-

3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgD

zZ-E41CJ6PVmY4S0MqVbxsFQ

5. http://nptel.ac.in/courses/10610

2064/1CourseOutcomes:

Attheendofthecourse,studentswillb

eableto

COs

CourseOutcome

Bloom’s

Taxonomy
Level

CO1 Implementthelineardatastructuressuchaslinkedlist,stacksandqueues Understand

CO2 Understand theDictionariesandHashtablerepresentation Understand

CO3 Analyzethevariousnonlineardatastructureswithitsoperations Analyze

CO4 DeveloptheprogramsbyusingGraphTraversalandheapsort Understand

CO5
Applydatastructureconceptsforthe implementationofpattern matching
andtries

Apply

CO-PO,PSOMapping
(3/2/1indicatesstrengthofcorrelation)3-Strong,2-Medium,1-Weak

COs
ProgrammeOutcomes(POs) PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

O1
2 3 2 2 3

CO2 2 2 3 3 2

CO3 2 2 2 1

CO4 2 3 2 3

CO5 2 3 3 2 3

http://gvpcse.azurewebsites.net/pdf/data.pdf
http://www.sncwgs.ac.in/wp-content/uploads/2015/11/Fundamental-Data-Structures.pdf
http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv247-Page1.htm
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7-3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgDzZ-E41CJ6PVmY4S0MqVbxsFQ
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7-3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgDzZ-E41CJ6PVmY4S0MqVbxsFQ
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7-3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgDzZ-E41CJ6PVmY4S0MqVbxsFQ
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7-3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgDzZ-E41CJ6PVmY4S0MqVbxsFQ
http://ndl.iitkgp.ac.in/document/yVCWqd6u7wgye1qwH9xY7-3lcmoMApVUMmjlExpIb1zste4YXX1pSpX8a2mLgDzZ-E41CJ6PVmY4S0MqVbxsFQ
http://nptel.ac.in/courses/106102064/1
http://nptel.ac.in/courses/106102064/1

1

MODULE-I:

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion,

deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks,

stack applications, Queues-operations, array and linked representations.

Introduction:

.Datastructureisacollectionoforganizeddatainthememorylocations. Data

structure can be classified as

.LinearDatastructure:oneelementis connectedtoanotherelement inlinearform .

.Inthelineardatastructurevaluesarearrangedinalinearfashion.Anarray,linkedlist,stacks and

queues are Examples of linear data structure.

TypesofDataStructures:

Therearetwotypesofdatastructureavailablefortheprogramming purpose:

o Primitivedatastructure

o Non-primitivedatastructure

MODULE-1

DATA

STRUCTURES

2

Primitivedatastructure

Primitive data structure is a data structure that can hold a single value in a specific location

whereas the non-linear data structure can hold multiple values either in a contiguous location or

random locations

The examples of primitive data structure are float, character, integer and pointer. The value tothe

primitive data structure is provided by the programmer. The following are the four primitive data

structures:

o Integer: The integer data type contains the numeric values. It contains the whole

numbers that can be either negative or positive. When the range of integer data type isnot

large enough then in that case, we can use long.

o Float: The float is a data type that can hold decimal values. When the precision of

decimalvalue increases then the Double data type is used.

o Boolean: It is a data type that can hold either a True or a False value. It is mainly usedfor

checking the condition.

o Character: It is a data type that can hold a single character value both uppercase and

lowercase such as 'A' or 'a'.

Non-primitivedatastructure

The non-primitive data structure is a kind of data structure that can hold multiple values

either in a contiguous or random location. The non-primitive data types are defined by the

programmer. The non-primitive data structure is further classified into two categories, i.e.,

linear and non-linear data structure.

LinearDataStructures:

A data structure is called linear if all of its elements are arranged in the linear order. In

linear data structures, the elements are stored in non-hierarchical way where each elementhas

the successors and predecessors except the first and last element.

TypesofLinearDataStructuresaregivenbelow:

Arrays: An array is a collection of similar type of data items and each data item is called an

elementofthearray.Thedatatypeoftheelementmaybeanyvaliddatatypelikechar,int,

3

floator double.

o Theelementsofarraysharethesamevariablenamebuteachonecarriesadifferentindex number

known as subscript. The array can be one dimensional, two dimensional or
multidimensional.

o Theindividualelements ofthearrayageare:

o age[0],age[1],age[2],age[3],age[98],age[99].

Linked List: Linked list is a linear data structure which is used to maintain a list in the

memory. It can be seen as the collection of nodes stored at non-contiguous memorylocations.

Each node of the list contains a pointer to its adjacent node.

Stack: Stack is a linear list in whichinsertion and deletions are allowed only at one end,

called top.

o A stack is an abstract data type (ADT), can be implemented in most of the programming
languages. It is named as stack because it behaves like a real-world stack, for example: -
piles of plates or deck of cards etc.

Queue:Queueisalinearlistinwhichelementscanbeinsertedonlyatoneend called rear and

deleted only at the other end called front.

o Itisanabstractdatastructure,similartostack.Queueisopenedatbothendthereforeit

4

followsFirst-In-First-Out(FIFO)methodologyfor storingthedataitems.

Non Linear Data Structures: Anon-lineardatastructureisanotherimportanttypeinwhich data

elements are not arranged sequentially .mainly data elements arranged in random order.

.nonlineardatastructuresoneelementisconnectedmultipleelements. Types

of Non Linear Data Structures are given below:

Trees:Atreeisanon-linearabstractdatatypewithahierarchy-basedstructure.Itconsistsofnodesthatare

connected via links. The tree data structure stems from a single node called a root node and has subtrees connected

to the root.

Graphs: Agraphisa non-linear kindofdatastructure madeup of nodes or vertices and edges.The edges

connect any two nodes in the graph, and the nodes are also known as vertices.

5

Intheabovegraph, V

= {a, b, c, d, e}

E={ab,ac,bd,cd, de}

.ifthereisnoedgebetweentwonodesthepresencevalue0

.ifthereisanedgebetweentwonodesthepresencevalue1

.AbstractDataTypes:

An ADT is a theoretical construct that consist of data as well as the operations to be performed

on data to implementation.

. data

.operations–insertion,deletionand list

. implementation

. Errors

ADTexamplesaresack,queuesandlinkedlist

.Abstractdatatypescan beclassified as

1. List ADT:Listsarelineardatastructuresstoredinanon-continuousmannerthelistismade up of a

series of connected nodes that are randomly stored in the memory.

.Hereeachnodeconsists oftwopartsthefirstpartisthedataandthesecondpartcontainsthe pointer to

the address of the next node.

TheListADTFunctionsisgivenbelow:

 get()–Returnanelementfrom thelistatanygivenposition.

 insert()–Insertanelementatanypositionofthelist.

 remove()–Removethefirstoccurrenceofanyelementfromanon-emptylist.

 removeAt()–Removetheelementataspecifiedlocationfromanon-emptylist.

 replace()–Replaceanelementatanypositionbyanotherelement.

 size()–Returnthenumberofelementsinthelist.

6

 isEmpty()–Returntrueifthelistisempty,otherwisereturnfalse.

 isFull()–Return trueifthelistisfull,otherwisereturnfalse.

2. Stack ADT:Astackisan orderedlistandwhichelementsareinsertedanddeletedatonlyone end

called TOP of the stack.

.stackisaLIFO Technique

.Thestack ADToperationsas follows

 push()–Insertanelementatoneendofthestackcalledtop.

 pop()–Removeandreturntheelementatthetopofthestack,ifitisnotempty.

 peek() – Returnthe element at the top ofthe stack without removing it, ifthe stack is

notempty.

 size()–Returnthenumberofelementsinthestack.

 isEmpty()–Return trueifthestackisempty,otherwisereturnfalse.

 isFull()–Return trueif thestackisfull,otherwisereturnfalse.

3. Queue ADT:AqueueisanorderedlistinwhichinsertionisdoneatoneendcalledREARand deletion

at another end called FRONT.

. The first inserted element is availablefirst for theoperations to be performed and is the first

one to be deleted.

.Henceitisknownasfirstinfirstout(FIFO) The

queue ADT operations as follows

 enqueue()–Insertanelementattheendofthequeue.

 dequeue()–Removeandreturnthefirstelementofthequeue,ifthequeueisnotempty.

 peek()–Returntheelementofthequeuewithoutremovingit,if thequeueisnotempty.

 size()–Returnthenumberofelementsinthequeue.

 isEmpty()–Returntrueifthequeueisempty,otherwisereturnfalse.

 isFull()–Returntrueifthequeueisfull,otherwisereturnfalse.

Linked List:Anelementinalinkedlistisaspeciallytermednode.Anodeconsistoftwo fields data

and link(address).

.Alinkedlistisanorderedcollectionoffinite,homogeneousdataelementscallednodes.where the

linear order is maintained by means of links or pointers.

7

.singlelinkedlist:inasinglelinkedlisteach nodecontainsonlyonelinkwhichpointstothe subsequent node

in the list.

.onewaychain or singlylinked listcan betraversedonly one direction.

UsesofLinkedList

o Thelistisnotrequiredto becontiguouslypresentinthememory.

o listsizeislimitedtothe memorysizeanddoesn'tneedtobedeclaredinadvance.

o Emptynodecannotbepresentinthelinkedlist.

o Wecanstorevaluesofprimitive typesorobjects inthesingly linkedlist.

NodeCreation:

structnode

{

int data;

structnode*next;

};

Advantages:Theyaredynamicinnaturewhichallocatesthememorywhen required.

.insertionand deletioncan beeasily implemented.

.stacksandqueuescanbeeasily executed.

.itreducesthe accesstime.

Disadvantages:Thememoryiswastedaspointersrequiredextramemoryfor storage.

.Eachnodehastoaccess sequentially.

.Reversetraversingis difficult.

Applicationsoflinkedlist :Linkedlistareusedtoimplementstack,queue,graphetc.

.linked listlet youinsert element atthebeginningand endofthe list.

.in linked list wedo not need to knowthe sizein advance.

SinglyLinkedList operations:

Therearevariousoperationswhichcanbeperformedonsinglylinkedlist.Alistofallsuch operations is

given below.

8

Insertion
.Theinsertionintoasinglylinkedlistcanbeperformedatdifferentpositions.Basedon theposition ofthe

new node being inserted, the insertion is categorized into the following categories

1. insertionat beginning

2.insertion at end of the list

3.insertionafterspecifiednode

.insertionatbeginningoftheList:Toinsertanewelementatbeginningpositionandptrnode connected to

next node and last node it indicates NULL.

Algorithm:

o Step1: IFPTR =NULL

WriteOVERFLOW

GotoStep7[END

OF IF]

o Step2: SETNEW_NODE =PTR

o Step3: SETPTR=PTR→NEXT

o Step4:SETNEW_NODE→DATA= VAL

o Step5:SETNEW_NODE →NEXT= HEAD

o Step6:SETHEAD=NEW_NODE

o Step7: EXIT

9

InsertingAtEndoftheList:Toinsertelementinlastnodeofthelisttheheadpreviouslastnodeslinkfield which was

NULL.

Algorithm:

o Step1:IFPTR=NULL

WriteOVERFLO

WGotoStep10

o Step2:SETNEW_NODE=PTR

o Step 3:SETPTR=PTR->NEXT

o Step4:SETNEW_NODE->DATA=VAL

o Step5:SETNEW_NODE- >NEXT=NULL

o Step6:SETPTR=HEAD

o Step 7:RepeatStep 8whilePTR ->NEXT !=NULL

o Step8:SETPTR=PTR-

>NEXT[END OFLOOP]

o Step 9:SETPTR->NEXT=NEW_NODE

o Step10:EXIT

InsertingAfterspecifiednode:Inordertoinsertanelementafterthespecifiednumberofnodes in to the

linked list we need to skip the desired number of elements in the list to move the pointer at the

position after which the node will be inserted .

10

Algorithm:

o STEP1:IFPTR=NULL

WRITEOVERFLO

WGOTOSTEP12

END OF IF

o STEP2: SETNEW_NODE=PTR

o STEP3:NEW_NODE → DATA=VAL

o STEP4:SETTEMP= HEAD

o STEP5:SETI=0

o STEP6:REPEAT STEP5AND6UNTIL I

o STEP7:TEMP=TEMP→ NEXT

o STEP8: IFTEMP=NULL

WRITE"DESIREDNODENOT

PRESENT"GOTO STEP 12

END OF IF

ENDOF

LOOP

o STEP9:PTR→NEXT=TEMP →NEXT

o STEP10:TEMP→ NEXT=PTR

o STEP11:SETPTR=NEW_NODE

o STEP12:EXIT

Deletion:Thedeletionoperationisusedtodeleteanodefromthelistanditcanbeperformedat three

different locations

. deletion of thefirst node

11

.deletion of thelast node

.deletionatthespecifiedposition

.Deletionofthefirstnode:Deletinganodefromthebeginningofthelististhesimplestoperationof all.since the

first node of the list is to be deleted therefore we just need to make the head ,point to the next of the

head. Now free the pointer ptr which was pointing to the head node of the list.

Algorithm:

Step1:IFHEAD=NULL

WriteUNDERFLOWGotoStep 5

[ENDOFIF]

Step2:SETPTR=HEAD

Step3:SETHEAD=HEAD->NEXT

Step4:FREEPTR

Step5:EXIT

2. DeletionoftheLastnode:Therearetwoscenariosinwhichanodeisdeletedfromtheendofthe linked list

.Thereis only onenodein the list andthat needs to bedeleted.

.There aremorethan onenodein thelist and thelast nodeof thelist will be deleted.

Algorithm:

o Step1:IFHEAD=NULL

12

WriteUNDERFLOW

GotoStep8

[ENDOFIF]

o Step2:SETPTR=HEAD

o Step3:RepeatSteps4and5whilePTR->NEXT!=NULL

o Step4:SETPREPTR=PTR

o Step5:SETPTR=PTR-

>NEXT[END OF LOOP]

o Step6:SETPREPTR->NEXT=NULL

o Step7:FREEPTR

o Step8:EXIT

3. Deletionatthespecifiedposition:To delete a nodefromthe singlylinkedlistbefore the specified

position in a singly linked list.

Algorithm:

STEP1:IFHEAD=NULLWRITE

UNDERFLOW

GOTOSTEP10

END OF IF

STEP2:SETTEMP=HEAD

STEP3:SETI=0

STEP4:REPEATSTEP5TO8UNTILI<loc<li=""></loc<>

STEP5:TEMP1=TEMP

STEP6:TEMP=TEMP→NEXT

STEP7:IFTEMP=NULL

13

WRITE"DESIREDNODENOTPRESENT"

GOTOSTEP11

ENDOFIF

STEP8:

I=I+1ENDOFLO

OP

STEP9:TEMP1→NEXT=TEMP→NEXT

STEP10:FREETEMP

STEP11:Exit

Searching in singly linked list : Searching is performed in order to find the location of a particular

element in the list .searching any element in the list needs traversing through the list and make the

comparison of every element of the list with the specified element.

. if the element is matched with any of the list element then the location of the element is returned

from the function.

Algorithm:

o Step1:SETPTR =HEAD

o Step2:Set I=0

o STEP3:IFPTR= NULL

WRITE"EMPTYLIST"

GOTOSTEP8

ENDOFIF

o STEP4:REPEATSTEP5TO7UNTIL PTR!= NULL

o STEP5:if ptr→ data = item

Writei+1

EndofIF

o STEP 6:I=I+1

o STEP7:PTR=PTR→NEXT

[END OF LOOP]

o STEP8:EXIT

Traversing in singly linked list : Traversing is the most common operation that is performed in almost

every scenario of singly linked list .Traversing means visiting each node of the list once in order to

perform some operation on that .

14

Algorithm:

STEP1:SETPTR=HEAD

STEP2:IFPTR=NULL

WRITE"EMPTYLIST"

GOTOSTEP6

STEP3:REPEATSTEP5AND6UNTILPTR!=NULL

STEP 4: PRINT PTR→

DATASTEP5:PTR = PTR →

NEXTSTEP6:EXIT

Writeacprogram tosinglylinkedlistimplementation andoperations

a)creation b)insertion c)deletiond)Traversal

#include<stdio.h>

15

#include<stdlib.h>

structnode{

int data;

structnode*next;

}*head=NULL;

intcount()

{

structnode*temp; int

i=1;

temp=head;

while(temp->next!=NULL)

{

temp=temp->next; i++;

}

return(i);

}

structnode*create(intvalue)

{

structnode*temp;

temp=(structnode*)malloc(sizeof(structnode));

temp->data=value;

temp->next=NULL;

return temp;

}

voidinsert_begin(intvalue)

16

{

structnode*newnode;

newnode=create(value);

if(head==NULL)

{

}

else

{

}

}

head=newnode;

newnode->next=head; head=newnode;

voidinsert_end(intvalue)

{

structnode*newnode,*temp;

newnode=create(value);

if(head==NULL)

{

}

else

{

head=newnode;

temp=head;

while(temp->next!=NULL)

{

temp=temp->next;

}

temp->next=newnode;

}

}

voidinsert_pos(intvalue,intpos)

{

structnode*newnode,*temp1,*temp2; int

i,c=1;

newnode=create(value);

i=count();

if(pos==1)

insert_begin(value);

elseif(pos>i+1)

{

printf("insertion is not posible"); return;
}

else

{

temp1=head;

while(c<=pos-1&&temp1!=NULL)

17

{

temp2=temp1;

temp1=temp1->next;

c++;

}

newnode->next=temp2->next;

temp2->next=newnode;

18

}

}

voiddelete_begin()

{

structnode*temp;

if(head==NULL)
{

printf("deletionisnotpossible");

}

else

{

temp=head;

head=head->next;

free(temp);

}

}

voiddelete_end()

{

structnode*temp1,*temp2;

if(head==NULL)
{

printf("deletionisnotpossible");

}

else

{

temp1=head;

while(temp1->next!=NULL)

{

temp2=temp1;

temp1=temp1->next;

}

temp2->next=NULL;

free(temp1);

}

}

voiddelete_pos(intpos)

{

structnode*temp1,*temp2;

int i,c=1;

i=count();

if(pos==1)

delete_begin();

elseif(pos>i)
{

printf("Deletion is not posible"); return;
}

else

{

19

temp1=head;

while(c<=pos&&temp1->next!=NULL)

{

temp2=temp1;

temp1=temp1->next;

c++;

}

20

temp2->next=temp1->next;

free(temp1);
}

}

voiddisplay()

{

structnode*temp;

if(head==NULL)

{

printf("listisempty");

}

else

{

temp=head;

while(temp->next!=NULL)

{

printf("%d->",temp->data);

temp=temp->next;

}

printf("%d",temp->data);

}

}

voidmain()

{

intch,pos,value; do

{

printf("\n1.InsertBegin\n2.InsertEnd\n3.InsertPosition\n4.DeleteBegin\n5.DeleteEnd\n6

.Delete Position\n7.Display\n8.Exit\n");

printf("enter your choice:");

scanf("%d",&ch);

switch(ch)

{

case1:printf("enter the value:");

scanf("%d",&value);

insert_begin(value);

break;

case2:printf("enter value:");

scanf("%d",&value);

insert_end(value);

break;

case3:printf("enter value:");

scanf("%d",&value);

printf("enter position you want to insert: ");

scanf("%d",&pos);

insert_pos(value,pos);

break;

case4:delete_begin();

break;

21

case5:delete_end();

break;

case6:printf("enter position you want to delete: ");

scanf("%d",&pos);

delete_pos(pos);

break;

case7:display();

22

DifferencebetweenArrayandLinkedList

S.No. ARRAY LINKED LIST

1.

An array is a grouping of

dataelementsofequivalent

data type.

A linked list is a group of

entitiescalledanode.The

node includes two

segments: data and

address.

2.

Itstoresthedataelements in

a contiguous memory

zone.

It stores elements

randomly, orwe can say

anywhereinthememory

zone.

3.

In the case of an array,

memory size is fixed, and

itisnotpossibletochange it

during the run time.

In the linked list, the

placementofelementsis

allocated during the run

time.

4.

The elements are not

dependentoneachother.

The data elements are

dependentoneachother.

5.

Thememoryisassignedat

compile time.

Thememoryisassignedat

run time.

6.

It is easier and faster to

accesstheelementinan array.

Inalinkedlist,theprocess of

accessing elements takes

more time.

7.

Inthecaseofanarray,

memory utilization is

ineffective.

In the case of the linked

list,memoryutilizationis

effective.

8

When it comes to

executinganyoperation

like insertion, deletion,

array takes more time.

When it comes to

executing any operation

likeinsertion,deletion,the

linked list takes less time.

break;

case8:break;

default:printf("\nyourchoiceiswrong!..");

}

}while(ch!=8);

}

23

DOUBLY LINKED LIST:A doubly linked list is a more complex data structure than a singly

linked list the main advantage of a doubly linked list is that it allows for efficient traversal of the

listinbothdirections.Thisisbecauseeachnodeinthelistcontainsapointertothepreviousnode and a
pointer to the next node.

.Thisallowsforquickandeasyinsertionanddeletionofnodesfromthelistaswellas efficient

traversal of the list in both directions,

.Adoublylinkedlistisadatastructurethatconsistsofasetofnodeseach ofwhichcontainsa value and

two pointers .onepointing to the previous nodein thelist and onepointing to the next node in the
list.

Representationofdoublylinkedlistindatastructure:Inadatastructureadoublylinkedlistis

represented using nodes that have three fields

1. Data

2. A pointerto thenext node(next)

3. A pointerto theprevious node(prev)

InC,thestructureofadoublylinkedlist canbegivenas, struct

node

{

structnode

*prev;int data;
structnode*next;

};

Doublylinkedlistoperations:

1.insertion

2. deletion
3. searching

4.Traversing

24

Example:

Insertion:Toinserta newelementinthe listthisoperationcan beperformedinthreeways

1.insertionatbeginningofthelist

2.insertion at end of the list

3.insertion after specified node

1. insertion at beginningof the list :The elements is inserted at beginning the newnode

connectedtonextnode.IndoublylinkedlistfirstnodeandlastnodeitindicatesNULL value.

Algorithm:

Step1:IFptr=NULL

25

WriteOVERFLOW

GotoStep9

[ENDOFIF]

Step2:SETNEW_NODE=ptr

Step3:SET ptr=ptr->NEXT

Step4:SETNEW_NODE->DATA=VAL

Step5:SETNEW_NODE-

>PREV=NULLStep6:SETNEW_NODE-

>NEXT=STARTStep7:SEThead-

>PREV=NEW_NODE

Step8:SEThead=NEW_NODE

Step9:EXIT

2. insertion at end oftheList :The element is inserted at end thenew node inserted

into the list.

.Allocate the memory for the new node make the pointer ptr point to the newnode

being inserted .

26

Algorithm :

27

Step1:IFPTR=NULL

WriteOVERFLOW

GotoStep11

[END OF IF]

Step2:SETNEW_NODE=PTR

Step3:SETPTR=PTR->NEXT

Step4:SET NEW_NODE-

>DATA=VALStep5:SET NEW_NODE ->

NEXT = NULLStep6:SETTEMP=START

Step7:RepeatStep8whileTEMP->NEXT!=NULL

Step8:SETTEMP=TEMP->NEXT[END

OF LOOP]

Step9:SETTEMP->NEXT=NEW_NODE

Step10C:SETNEW_NODE-

>PREV=TEMPStep11:EXIT

3. insertionafter specifiednode:To insertanode after thespecified positionin thelist.

28

Algorithm:

Step 1:IFPTR= NULL

WriteOVERFLOWG
otoStep15

[ENDOFIF]

Step2:SETNEW_NODE=PTR

Step 3:SETPTR=PTR->NEXT

Step4:SETNEW_NODE->DATA=VAL

Step5:SETTEMP=START

Step6:SETI=0

Step7:REPEAT8to10untilI

Step8:SETTEMP=TEMP ->NEXT

STEP9:IFTEMP=NULL

STEP10:WRITE"LESSTHANDESIREDNO.OFELEMENTS"

GOTOSTEP15[
ENDOFIF][END
OFLOOP]

Step11:SETNEW_NODE->NEXT=TEMP->NEXT

Step12:SETNEW_NODE ->PREV=TEMP

Step13:SETTEMP->NEXT=NEW_NODE

29

Step14:SETTEMP ->NEXT ->PREV=NEW_NODE

Step15:EXIT

2. Deletion:Deleteanodefromthelistthedeletionofanodeinadoublylinkedlistcanbedividein to three

categories

1. Deletionat beginning of thelist

2. Deletionat end of thelist

3. deletionat aspecified node

1. Deletion at beginning of the list : Deletion in doubly linked list at the beginning is the simplest

operationtodeleteanodeatfirstnodeandheadpointingto nextnodeofthelistnowfreethepointer ptr by

using free function.

Algorithm:

STEP1:IFHEAD=NULL

WRITEUNDERFLOW
GOTO STEP 6

STEP2:SETPTR=HEAD

STEP3:SETHEAD=HEAD→NEXT

STEP 4:SET HEAD→PREV =NULL

STEP 5: FREE PTR

STEP6:EXIT

30

2. deletionatendofthelist:Deletionofthelastnodeinadoublylinkedlist needstraversingthelistin order to

reach the last node of the list and then make pointer.

1. ifthelistisalreadyemptythentheconditionhead==NULLwillbecometrueandthereforethe

operation cannot be carried on.

2. ifthereis onlyone nodein thelist thenthe conditionhead->next==NULLbecome true.

3. otherwisejust traverse the listtoreach thelastofthe list.

Algorithm:

Step1: IFHEAD= NULL

31

WriteUNDERFLOW

GotoStep7 7

[ENDOF IF]

Step2:SET TEMP=HEAD

Step3:REPEATSTEP4WHILETEMP->NEXT!=NULL

Step4:SETTEMP=TEMP->NEXT

[END OF LOOP]

Step5:SETTEMP ->PREV->NEXT=NULL

Step6:FREETEMP

Step7:EXIT

DeletingtheLast Nodefroma DoublyLinked List:

3. Deletion at a specified node : in order to delete the node after the specified data we

need to perform the following steps

.copytheheadpointerintoatemporarypointertemp.

.Traversethelistuntilwefindthedesireddatavalue.

.checkifthisis thelastnodeofthelist.

.checkifthenodewhichistobedeletedisthelastnodeofthelistifitsothenwe have to

make the next pointer of this node point to NULL so that it can be the new last node

of the list.

32

Algorithm:

Step1: IFHEAD= NULL

WriteDERFLOW

GotoStep9

[ENDOF IF]

Step2:SET TEMP=HEAD

3:Repeat Step 4whileTEMP->DATA!=ITEM

Step4:SETTEMP=TEMP->NEXT

[END OF LOOP]

Step5:SETPTR =TEMP->NEXT

Step6:SETTEMP->NEXT=PTR->NEXT

Step7:SETPTR ->NEXT->PREV=TEMP

Step 8: FREE PTR

Step9:EXIT

33

3. searching:we justneedtraversethelistinordertosearchfor aspecificelementinthe list

perform following operations in order to search a specific operation

1. copyheadpointerintotemporarypointervariableptr.

2. declarea local variableI and assign it to 0.

3. Traverse the list until the pointer ptr becomes NULL keep shifting pointer to its next and

increasing i by plus one.

4. compareeachelement ofthe listwith theitemwhichis tobesearched.

5. if the item matched with any node value then the location of that value I will be returned

from the function else NULL is returned.

Algorithm :

Step1:IFHEAD==NULL

WRITE"UNDERFLOW"GOTO
STEP8
[ENDOFIF]

Step 2:SetPTR= HEAD

Step 3:Seti =0

Step4:Repeatstep5to7whilePTR!=NULL

Step5:IFPTR→ data=item

return i
[ENDOFIF]

Step6:i=i +1

Step7:PTR=PTR→next

Step8:Exit

4.Traversing :Although traversing means visiting each node of the list once to perform some

specificoperation .Here we are printing the data associated with each node of the list.

Algorithm :

Step1:IFHEAD==NULL

WRITE"UNDERFLOW"

GOTOSTEP6

[ENDOF IF]

Step2:SetPTR = HEAD

Step3:Repeatstep 4and 5whilePTR !=NULL

34

Step4:WritePTR→ data

Step5:PTR =PTR → next

Step6:Exit

. Circular linkedlist : in a circular singly linked list the last node of the list contains a pointer to

the first node of the list. we can have circular singly linked list as well as circular doubly linked

list.

. we traverse a circular singly linked list until we reach the same node where we started .The

circular singly linked list has no beginning and no ending there is no null value present in the

next part of any of the nodes.

.circularlinkedlistaremostly usedin taskmaintenancein operating system.

Operations:circularlinkedlistoperationsare

1.insertition

2.deletion

3.Traversing

4.Searching

1. insertion:Toinsertanewnodein thelist.insertioncanbeclassified as

.insertionatbeginning:Therearetwoscenarioinwhichanodecanbeinsertedin circular singly

linked list at beginning .

.Eitherthenodewillbeinsertedinanemptylistorthenodeistobeinsertedinanalready filled list.

. The condition head==NULL will be truesince the list in which we are inserting the node is

a circular singly linked list there fore the only node of the list.

35

. The condition head==NULL will become false which means that the list contains at least

one node.

Algorithm :

Step 1:IFPTR= NULL

WriteOVERFLOWG
otoStep11
[ENDOFIF]

Step2:SETNEW_NODE=PTR

Step 3:SETPTR=PTR->NEXT

Step4:SETNEW_NODE->DATA=VAL

Step5:SETTEMP=HEAD

Step6:RepeatStep8whileTEMP ->NEXT!=HEAD

Step7:SETTEMP=TEMP ->NEXT

[ENDOFLOOP]

Step8:SETNEW_NODE->NEXT=HEAD

Step9:SETTEMP→NEXT=NEW_NODE

Step 10: SET HEAD = NEW_NODE

Step11:EXIT

2. insertingnodeatendofthelist:To inserta newnodein end ofthelist

36

Algorithm :

Step 1:IFPTR= NULL

WriteOVERFLOWG

otoStep1

[ENDOFIF]

Step2:SETNEW_NODE=PTR

Step 3:SETPTR=PTR->NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step5:SETNEW_NODE->NEXT=HEAD Step

6: SET TEMP = HEAD

Step7:RepeatStep8whileTEMP ->NEXT!=HEAD

Step8:SETTEMP=TEMP ->NEXT

[ENDOFLOOP]

Step9:SETTEMP ->NEXT=NEW_NODE

Step10:EXIT

2. Deletion:Todeletethe elementintothelistitcanbeclassified as

.Deletionatbeginning:Removethenodefromcircularsinglylinkedlistatthebeginningofthe node in the

list .

.There arethreescenarios ofdeleting anodefrom circularsinglylinked list at beginning

1. Thelist is empty

37

2. Thelist contains singlenode.

3. Thelist contains morethan onenode.

Algorithm:

Step1:IFHEAD=NULL

WriteUNDERFLOW
GotoStep8

[ENDOFIF]

Step2:SETPTR=HEAD

Step3:RepeatStep4whilePTR→NEXT!=HEAD

Step4:SETPTR=PTR→next

[ENDOFLOOP]

Step5:SETPTR→NEXT=HEAD→ NEXT

Step6:FREEHEAD

Step7:SET HEAD=PTR→NEXT

Step8:EXIT

.Deletion at end of the List :There are three scenarios of deleting a nodein circular singly

linked list at the end

. Thelist is empty

.Thelistcontainssingleelement.

.Thelistcontainsmorethanoneelement.

38

Algorithm :

Step1:IFHEAD=NULL

WriteUNDERFLOW

GotoStep8

[ENDOFIF]

Step2:SETPTR =HEAD

Step3:RepeatSteps 4and 5while PTR->NEXT!=HEAD

Step4:SETPREPTR =PTR

Step5:SETPTR=PTR->NEXT [END

OF LOOP]

Step6:SET PREPTR ->NEXT=HEAD

Step7:FREEPTR

Step8:EXIT

3. Traversing:Althoughtraversingmeansvisitingeachnodeofthelistoncetoperformsome specific

operation Here we are printing the data associated with each node of the list.

Algorithm:

1. Setptr=Head

2. Ifptr=NULLwriteemptylistgoto step7

3. Repeatstep4and5until Ptr->next!=head

39

4. printptr->data=value

5.ptr=ptr->next

6.printptr->data

7.Exit

4. Searching : searching in circular singly linked list needs traversing across the list the item

which is to be searched in the list is matched with each node data of the list once and if the match

found then the location of that item is returned other wise -1 returned.

Algorithm :

1. setPtr=head

2. setI=0

3. ifptr=NULLwrite“emptylist”gotostep8

4. ifhead->data=item

Write i+1

5. Repeatstep5to7untilptr->next!=head

6. if ptr->data=item

7. i=i+1

8. ptr=ptr->next

9. Exit

STACKS:

Stack is a linear data structure in which the insertion and deletion operationsare performed at

only one end. In a stack adding and removingof elements are performed at single position which is known

as"top".Thatmeans,newelementisaddedattopofthestack andan elementisremovedfrom thetopof the stack

only. In stack, the insertion and deletion operations are performed based on LIFO (Last In First Out)

principle.The firstelementwhichisinsertedintostack isdeleted last thelast element whichis

insertedintostackisdeletedfirst.

40

In a stack, the insertion operation is performed using a function called "push" and deletion

operation is performed using a function called "pop". In the figure, PUSH and POP operations are

performed at top position in the stack. That means, both the insertion and deletion operations are

performed at one end i.e., at Top.

Example: If we want to create a stack by inserting 10,45,12,16,35 and 50. Then 10

becomes the bottom most element and 50 is the top most element. Top is at 50 as shown in the

image below.

OPERATIONSONASTACK:

Thefollowingaresomecommonoperationsimplementedonthe stack

.push():whenweinsert anelementinastackthentheoperationisknownasapush.ifthestackis full then the

overflow condition occurs.

.pop():whenwedeleteanelementfromthestacktheoperationisknownasapop.Ifthestackis empty means

that no element exists in the stack this state is known as an underflow state.

.isEmpty(): it determineswhetherthe stackis empty or not.

.isfull():itdetermines whetherthe stackis fullor not.

.peek():itreturns theelementat thegiven position.

.count():it returnsthe totalnumber ofelements availablein astack.

.display():itprintsalltheelementsavailableinthestack.

.Pushoperation:Beforeinsertinganelementinastackwecheck whetherthestackisfull.ifwe try to

insert the element in a stack and the stack is full then the overflow condition occurs.

.whenweinitializeastackwesetthevalueoftopas -1tocheckthatthestackisempty.when the new

element is pushed in a stack first the value of the top gets incremented i.e top=top+1 And the

element will be placed at the new position of the top.

41

.Theelementswill beinserted untilwereachthemaxsizeof the stack.

.POPoperation:Beforedeletingtheelementfromthestack,wecheckwhetherthestackis empty.

.Ifwetryto deletetheelement from theempty stack, thentheunderflowcondition occurs.

.Ifthe stack is notempty, wefirst access theelementwhich is pointed by thetop

.Oncethe popoperationisperformed, thetopis decrementedby 1,i.e.,top=top-1.

42

Stack datastructure canbe implement intwo ways.

They are as follows. 1. Stack Using Arrays

2.stackUsingLinkedList

When stackisimplemented usingarray,thatstack can organize only limited numberof

elements.

When stack is implemented using linked list, that stack canorganize unlimited number of

elements.

ARRAYREPRESENTATIONOF STACKS:

In the computer’s memory, stacks can be represented as a linear array. Every stack has a

variable called TOP associated with it, which is used to store the address of the topmost elementof

the stack. It is this position where the element will be added to or deleted from. Thereisanother

variable called MAX, which is used to store the maximum number of elements that the stack can

hold. If TOP = NULL, then it indicates that the stack is empty and if TOP = MAX–1, then the

stack is full. (You must be wondering why we have written MAX–1. It is because array indices

start from 0.).

TheabovestackshowsthatTOP=4,soinsertionsanddeletionswillbedoneatthis

position.Intheabovestack,fivemoreelements canstillbestored.

Stackimplementationusingarray:

Beforeimplementingactualoperations,firstfollowthebelowstepstocreateanempty

stack.

Step1:Declareallthe functionsusedinstack(push,pop,display)implementation.

Step2:Createaonedimensionalarraywith fixedsize.

Step3:Definea integervariable'top'andinitializewith'-1'.(inttop=-1).

Step 4:In main method displaya menu with list ofoperations and make suitable functioncallsto

perform operation selected by the user on the stack.

PushOperation:

The push operation is used to insert an element into the stack. The new element is

addedatthetopmostpositionofthestack.However,beforeinsertingthevalue,wemustfirstcheckif

43

TOP=MAX–1,becauseifthatisthecase,thenthestackisfullandnomoreinsertionscanbe

done.Ifanattemptismadetoinsertavalueinastackthatisalreadyfull,anOVERFLOWmessageisprinted.

Toinsertanelement withvalue6, wefirstcheckifTOP=MAX–1. Iftheconditionisfalse, then

we increment the value of TOP and store the new element at the position given by stack[TOP].

Thus, the updated stack becomes as shown

AlgoritmtoInsertanElementinaStack:

The algorithm to insert an element in a stack. In Step 1, we first check for the

OVERFLOW condition. In Step 2, TOP is incremented so that it points to the next location in the

array. In Step 3, the value is stored in the stack at the location pointed byTOP.

PopOperation:

The pop operation is used to delete the topmost element from the stack. However, before

deletingthevalue,wemust firstcheckifTOP=NULLbecauseifthat isthecase,thenit meansthe stack is

empty and no more deletions can be done. If an attempt is made to delete a value from a stack that

is already empty, an UNDERFLOW message is printed.

Todeletethetopmostelement,wefirstcheckifTOP=NULL. Iftheconditionisfalse,then

44

wedecrement thevaluepointedbyTOP.Thus,theupdatedstackbecomes as

AlgoritmtoDeleteanElementfromStack:

The algorithm to delete an element from a stack. In Step 1, we first check for the

UNDERFLOW condition. In Step 2, the value of thelocation in the stack pointed by TOP is stored

in VAL. In Step 3, TOP is decremented.

PeekOperation:

Peek is an operation that returns the value of the topmost element of the stack without

deleting it from the stack.However, the Peek operation first checks if the stack is empty, i.e., if

TOP = NULL, then an appropriate message is printed, else the value is returned.

Here,thePeekoperationwillreturn5,asitisthevalue ofthetopmostelementofthe stack.

AlgorithmforPeekoperation:

Displayoperation:

Displays the elements of a Stack. We can use the following steps to display the elements

of a stack.

Step 1:Check whetherstackisEMPTY. (top==-1)

Step2:IfitisEMPTY,thendisplay"StackisEMPTY!!!"andterminatethefunction.

45

Step3:IfitisNOTEMPTY,thendefineavariable'i'andinitializewithtop.Displaystack[i] value and

decrement i value by one (i--).

Step 4:Repeatabovestepuntilivaluebecomes '0'.

StackusingLinkedList:

The major problem with the stack implemented using array is, it works only for fixed

number of data values. That means the amount of data must be specified at the beginning of the

implementation itself(size of the stack). Stack implemented using array is not suitable, when we

don't know the size of data which we are going to use. A stack data structure can be implemented

by using linked list data structure. Thestack implementedusing linked list can work forunlimited

numberofvalues.Thatmeans,stackimplementedusinglinkedlistworksforvariablesizeofdata.

So,thereisnoneedtofixthesizeatthebeginningoftheimplementation.TheStackimplemented using

linked list can organize as many data values as we want.

In a linked stack, every node has two parts—one that stores data and another that stores the

address of the next node. The START pointer of the linked list is used as TOP. All insertions and

deletions are done at the node pointed by TOP. If TOP = NULL, then it indicates that the stack is

empty.

Example:

Inaboveexample,thelastinsertednodeis9andthefirstinsertednodeis5.Theorderofelements inserted is

5,6,2,4,3,7,1 and 9.

StackimplementationusingLinkedlist:

To implement stack using linked list, we need to set the following things

beforeimplementing actual operations.

Step1:Declareallthefunctionsusedinstack(push,pop,disply)implementation Step

2: Define a 'Node' structure with two fields data and link.

Step3: DefineaNodepointer 'top'andsetittoNULL.

Step4: Implement the main method bydisplaying Menu withlist ofoperationsand makesuitable

function calls in the main method.

46

OPERATIONSON ALINKED STACK:

Alinked stacksupportsallthe threestackoperations,thatis,push, pop,and peek.

Push Operation:

The push operation is used to insert an element into the stack. The new element is added at the

topmost position of the stack.

To insert an element with value 9, we first check if TOP=NULL. If this is the case, thenwe

allocate memory for a new node, store the value in its DATA part and NULL inits NEXT part.

The new node will then be called TOP. However, if TOP!=NULL, then we insert the new node at

the beginning of the linked stack and name this new node as TOP.

Thus,theupdatedstack becomesas shownasbelow:

Algorithmtopush anelementintoalinked stack:

In Step 1, memory is allocated for the new node. In Step 2,the DATA part of the new node

is initialized with the value to be stored in the node. In Step 3, we check if the new node is thefirst

nodeofthelinked list. This isdoneby checking ifTOP =NULL.In casethe IFstatement evaluates to

true, then NULL is stored in the NEXT part of the node and the new node is called TOP.

However, if the new node is not the first node in the list, then itis added before the first node of

the list (that is, the TOP node) and termed as TOP.

Pop Operation:

The pop operation is used to delete the topmost element from a stack. However, before

deletingthevalue,wemustfirstcheckifTOP=NULL,becauseifthisisthecase,thenitmeans

47

that the stack is empty and no more deletions can be done. If an attempt is made to delete a value

from a stack that is already empty, an UNDERFLOW message is printed.

In case TOP!=NULL, then we will delete the node pointed by TOP, and make TOP point

to the second element of the linked stack. Thus, the updated stack becomes as shown below

Algorithmtodeleteanelementfromastack:

InStep1,wefirstcheck fortheUNDERFLOWcondition.InStep2,weuseapointerPTR that

points to TOP. In Step 3, TOP is made to point to the next node in sequence. In Step 4, the

memory occupied by PTR is given back to the free pool.

Display operation:

Displaying stack of elements We can use the following steps to display the elements

(nodes) of a stack.

Step1:Checkwhether stackisEmpty(top==NULL).

Step 2: If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

Step3:Ifit isNotEmpty,thendefineaNodepointer'temp'andinitializewithtop.

Step4:Display'temp->data->andmoveittothenextnode.Repeatthesameuntiltempreachesto the first

node in the stack (temp-> link != NULL).

Step5:Finally!Display'temp->data->NULL’.

APPLICATIONSOF STACKS:

Stacks can be easily applied for a simple and efficient solution. Different Application of

Stacks:

 Reversingalist

48

 Arithmetic Expression

a) infixnotation

b) prefixnotation

c) postfixnotation

d) Evaluationpostfixexpression

 Conversionofaninfix expressionintoapostfix expression

 Conversionofan infixexpression into aprefixexpression

 Evaluationofaprefix expression

 Recursion

TowerofHanoi

.Balancingsymbols

1. ReversingaList:Toreverseastringor elementsinreverseorder.

.Itis a efficient

.writeaprogramtoimplementstackoperationsusingareversingalistofelements.

#include<stdio.h>

#include<conio.h>

#definemaxsize10

‘ intstack[size],top=-1;

Void push(int);

intpop();

intisempty();

void main()

{

inta[size],i;

clrscr();

printf(“enterarrayelements\n”);

for(i=0;i<size;i++)

scanf(“%d”,&a[i]);

49

for(i=0;i<size;i++)

push(a[i]);

printf(“Listisreverseorder\n”);

for(i=0;!isempty();i++)

{

int ele;ele=pop();

printf(“%d”,ele);

}

getch();

}

Voidpush(intele)

{

if(top==size-1)

{

Printf(“stackisoverflow“);

else

top=top+1;

stack[top]=ele;

}

}

intpop()

{

int ele;

if(top==-1)

printf(“stackisunderflow“);

else

{

ele=stack[top];

top=top-1;

}

returnele;

50

}

intisempty()

{

if(top==-1)

return 1;

else

return 0;

}

2. Expressions:itisasetofoperandsinbetweentheoperatoriscalledasexpression

Example : A+B

a) Infix:whentheoperatoriswritteninbetweentheoperandsthenitisknownasinfix notation.

Example:a+b, a/b,a*b

b) Prefix:Theoperatorcomesfirstfollowedbytheoperands.

Example:++a,+ab,--ab

c) Postfix:Theoperands comesfirst followedby theoperator.

Example: ab+,ab*,ab/

d.Evaluationofpostfix Expression:itisaoperand stack

.only onestackisused .

.if thecharacterisan operandthenpushinto stack.

.ifthecharacterisanoperatorthenpoptop,twooperandsfromthestackandpushthe result back into

stack.

.After reading all the characters from the postfix expression stack will be having only

thewhich is result.

Example: 562*+

character stack

5 5

5 56

2 5 6 2

* Pop2,pop6

6*2=12

5 12

51

+ Pop12,pop5

5+12=17

562*+=17

3. Conversionofinfixtopostfixexpression:

1) Ifthecharacterisleftparenthesispushtothestack.

2) Ifthecharacterisoperand,addtothepostfix expression

3) Ifthecharacterisoperator,checkwhetherstackis empty

1) Ifthestackisempty,pushoperatorintostack

2) Ifthestackisnot empty ,checkthepriorityofthe operator

i) ifthepriorityoperator>operatorpresentattopofstackthenpushoperatorinto

stack.

ii) ifthepriorityoftheoperatoris<=operator presentattopofthestack,thenpop

theoperatorfrom stackandADDtopostfixexpressionandgoto step(i).

4) ifthecharacterisrightparenthesisthenpopalltheoperationsfromthestackuntilitmatches left

parenthesis and ADD to postfix expression.

5) Afterreadingallthecharacters,ifstackisnotemptythenpopandADDtopostfixexpression.

Example : Infix expression: K + L - M*N + (O^P) * W/U/V * T + Q

InputExpression Stack PostfixExpression

K K

+ +

L + KL

- - KL+

M - KL+M

* -* KL+M

52

N -* KL+MN

+ +
K L+M N*

KL+MN*-

(+(KL+MN*-

O +(KL+MN*-O

 ̂ +(^ KL+MN*-O

P +(^ KL+MN*-OP

) + KL+MN*-OP ̂

* +* KL+MN*-OP ̂

W +* KL+MN*-OP^W

/ +/ KL+MN*-OP^W*

U +/ KL+MN*-OP^W*U

/ +/ KL+MN*-OP^W*U/

V +/ KL+MN*-OP^W*U/V

* +* KL+MN*-OP^W*U/V/

T +* KL+MN*-OP^W*U/V/T

+ +
KL+MN*-OP^W*U/V/T*

KL+MN*-OP^W*U/V/T*+

Q + KL+MN*-OP^W*U/V/T*Q

 KL+MN*-

OP^W*U/V/T*+Q+

Thefinalpostfixexpressionofinfixexpression(K+L-M*N+(O^P)*W/U/V*T+Q)isKL+MN*-

53

4. Conversionofinfixtoprefixexpression:

.reversethe expression

.Apply thepostfix notation

.leftparenthesis (to)

.rightparenthesis)to(

.reversethepostfixexpression

Example : (A+B)*C-D+F

ReversetheexpressionF+D-C*(B+A)

character stack postfix

F F

+ + F

D + FD

- +-(POP +) FD+

C - FD+

* -* FD+C

(
- * (

FD+C

B
- * (

FD+CB

+
- *(+

POP(*)

FD+CB

FD+CB*

A -(+ FD+CB*A

) -(+)

POP(+)

POP(-)

FD+CB*A+-

ReversetheExpression=-+A*BC+FD

5. EvaluationofaPrefixExpression:startrightto left

-+3*45/16^23=21

OP^W*U/V/T*+Q+.

54

symbol stack

3 3

2 32

 ̂ 8

16 816

/ 2

5 25

4 254

* 220

3 2203

+ 223

- 21

6. Recursion:Recursionisafunctionthefunctioncallitselfiscalledasrecursion

Recursion example Towers of Hanoi problem

.TowersofHanoiproblem:Itisapuzzle game

. HereThreepegsordisksthedataismovedtoonedisktoanotherdisk Disks

are A,B,C DISK=3 N=3

1. Tower(N-1,Begin,End,Aux)

2. Tower(1,Begin,Aux,End)

3.Tower(N-1,Aux,Begin,End)

S.NO disk

1 A->C

2 A->B

3 C->B

4 A->C

5 B->A

6 B->C

7 A->C

55

AlgorithmforTowerofHanoi:

Step1: Start

Step2:Letthethreetowersbethesource,dest,aux.Step 3:

Read the number of disks, n from the user. Step 4: Move

n-1 disks from source to aux.

Step5:Moventhdisk fromsourcetodest.Step 6:

Move n-1 disks from aux to dest.

Step7:Repeat Steps3to5,bydecrementingnby1.

Step8:Stop

7. BalancingSymbols:symbolstackisused

(Expressions

[Expressions

{} Blockofstatements

() Balancedsymbols

[] Balancedsymbols

56

.countingopensymbolsandcountingclosedsymbols.

Algorithm : read character from Expression

.ifcharacterisopensymbol‘(‘,’[‘,’{‘pushsymbolintothestack.

.ifcharacterisclosedsymbol‘)’,’]’,’}’

a) checkifstackisemptyifthusexpressionisunbalanced.

b) ifthestackisnotemptythenpopthesymbolfromthestackandcomparewiththe

symbol whichisread,ifdoesn’tmatchesexpressionisunbalanced.elserepeat the process.

. After Reading all character of expression still stack is not empty that

implies unbalanced expression.

Ex: [(a+b)(a-b)]it is a balanced

expression . [(a+b)(a-

b]itisaunbalancedexpression

QUEUES:Queue isa linear datastructurewhich elementsareinserted at one endcalledrearand

whichelementsaredeleted otherendcalledfront.frontisfrontsideandrearisbackside.Queue is a

FIFOTechniquewhich element is insertedfirst thatelement isdeletedfirst.

Inaqueuedatastructure,theinsertionoperationisperformedusingafunctioncalled "enQueue()"

and deletion operation is performed using a function called "deQueue()".

.Queueusestwopointersfrontandrear

The front pointer accesses the datafrom the front end.while the rear pointer accesses datafrom

the rear end.

Example:Queueafterinserting 25,30,51,60and 85.

57

OperationsonaQueue:

Thefollowing operationsareperformed onaqueuedatastructure.

a. enQueue(value)-(Toinsertanelementintothequeue)

b. deQueue() -(To deleteanelementfromthequeue)

c. display()-(To display theelements of the queue)

1. Enqueue():Enqueue is a function used to insert a new

element into the queue.in a queue the new element is

always inserted at rear position .The Enqueue() function

takesoneintegervalueasparameterandinsertsthatvalue into

the queue.

Ex: consider the list of elements 12,9,7,18,14,36,45

Initiallyfront=0nandrear=-1thenrear=rear+1=-1+1=0

Front=0 and rear=0 12is insertedo th positionFront=0

and rear=19 is inserted1 st position

Front=0rear=2 7isinserted2ndposition

Front=0 rear=3 18 is inserted 3rd position

Front=0 rear=4 14isinserted4thposition

Front=0 rear=536 is inserted 5 th position

Front=0rear=645 is inserted 6 th position

The elements are1297 18143645 Algorithm

:

Step1:ifRear=Max-1writeoverflowgotostep4

Step2: if front=-1 and rear=-1

Setfront=rear=0

Else

SetRear=Rear+1

58

Step3:SetQueue[Rear]=num Step

4:Exit

2. Dequeueoperation:Deletingavaluefromthequeue.in a

queue data structure dequeue() is a function used to

delete an element from the queue.in a queue the element

is always deleted from front position .The dequeue()

function doesnot take any values as parameter.

Initiallyfront=-1andrear=6thenfront=front+1and

front=0

Front=0 andrear=612isdeleted

Front=1andrear=69isdeletedfromthequeue.

Front=2 rear=67 is deleted from the queue

Front=3 rear=618 is deleted from the queue

Front=4 rear=6 14 is deleted from the queue

Front=5rear=636 is deleted from the queue

Front=6rear=645isdeletedfromthequeuethenqueueis empty .

Algorithm:

Step1:iffront=-1orfront>Rear

Write under flow

Else

Setval=queue[front]

Set front=front+1

Step2:Exit

59

Display():

DisplaystheelementsofaQueue:Wecanusethefollowingstepstodisplaytheelementsofa

queue.

Step1:CheckwhetherqueueisEMPTY.(front==rear)

Step2:IfitisEMPTY,thendisplay"Queue isEMPTY!!!"andterminatethefunction.

Step3:IfitisNOTEMPTY,thendefineanintegervariable'i'andset'i=front+1'.

Step4:Display'queue[i]'valueandincrement'i'valuebyone(i++).Repeatthesameuntil'i'value is equal to

rear (i <= rear)

Queuedatastructurecanbeimplementedintwoways.

Theyareasfollows...

1. Using Array

2. UsingLinkedList

When a queue is implemented using array, that queue can organize only limited number of elements.

When a queue is implemented using linked list, that queue can organize unlimited number ofelements.

QueueimplementationbyUsingArray:

A queue data structure can be implemented using one dimensional array. But, queue

implemented using array can store only fixed number of data values. The implementation of queue

datastructureusing array isverysimple,justdefineaonedimensional arrayof specific sizeandinsert or

delete the values into that array by using FIFO (First In FirstOut) principle with the help of variables

'front' and 'rear'. Initially both 'front' and 'rear' are set to -1. Whenever, we want to insert a new value

into the queue, increment 'rear' value by one and then insert at that position.

.Two conditions

Overflow–insertionintoqueuewhichisfull

Underflow –deletion from empty queue

.TwoEnds

Front–it’spointtostarting element

60

Rear–it’spoint tolastelement .

Step1:Declarealltheuserdefinedfunctionswhichareused inqueueimplementation.

Step2:CreateaonedimensionalarraywithabovedefinedSIZE(intqueue[SIZE])

Step3:Definetwointegervariables'front'and'rear'andinitializebothwith'-1'.(intfront=-1,rear=

-1)

Step 4: Then implement main method by displaying menu of operations list and make

suitablefunction calls to perform operation selected by the user on queue.

EnQueueOperation:

Insertingvalueintothequeue:

In a queue data structure, enQueue() is a function used to insert a new element into the queue. Ina

queue, the new element is always inserted at rear position. The enQueue() function takes one integer

value as parameter and inserts that value into the queue. We can use the following stepsto insert an

element into the queue.

Newelement=45

DeQueueOpeartion:

Deleting a value from the Queue In a queue data structure, deQueue() is a function usedto

delete an element from the queue. In a queue, the element is always deleted from front position. The

deQueue() function does not take any value as parameter. We can use the followingsteps to delete an

element from the queue.

61

Deletedelement=12

Queue

LINKEDREPRESENTATIONOFQUEUES:

The major problem with the queue implemented using array is, It will work for only fixed

numberofdata.Thatmeans,the amountofdatamustbespecifiedinthebeginningitself. Queueusing array is

not suitable when we don't know the size of data which we are going to use. A queue data structure

can be implemented using linked list data structure. The queue which is implemented using linked list

can work for unlimited number of values. That means, queue usinglinked list can work for variable

size of data (No need to fix the size at beginning of the implementation). The Queue implemented

using linked list can organize as many data values as we want.

In linked list implementation ofa queue,the last insertednode is always pointed by'rear'and

the first node is always pointed by 'front'.

Example:

In above example, the last inserted node is 50 and it ispointed by 'rear' and the firstinsertednode

is 10 and itis pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

To implement queue using linked list, we need to set the following things beforeimplementing

actual operations.

Step1:Includeallthe header fileswhichareused intheprogram. Anddeclarealltheuserdefined functions.

Step2:Definea 'Node'structurewithtwomembersdataand next.

Step3:DefinetwoNode pointers'front'and'rear'andsetbothto NULL.

Step4:ImplementthemainmethodbydisplayingMenuoflistofoperationsandmakesuitable

62

functioncallsinthemainmethodtoperformuserselected operation.

EnQueue(value):

Inserting an element into the Queue We can use the following steps to insert a new nodeinto

the queue.

AlgorithmtoInsertanElementintoQueueusingLinkedList:

DeQueue():

DeletinganElementfromQueueWecanusethefollowingstepstodeleteanodefromthe queue.

63

AlgorithmtoDeleteanElementfromQueueusingLinked List:

Display():

DisplayingtheelementsofQueue Wecanusethefollowingstepstodisplaytheelements(nodes)ofa queue...

Step1:CheckwhetherqueueisEmpty(front==NULL).

Step2:IfitisEmptythen,display'Queue isEmpty!!!'andterminatethefunction.

Step3:IfitisNotEmptythen,defineaNodepointer'temp'andinitializewith front.

Step 4:Display 'temp data -> and move it tothenext node. Repeatthe same until'temp'reachesto 'rear'

(temp -> next != NULL).

Step5:FinallyDisplay'temp->data->NULL'.

TYPESOFQUEUES:

Aqueuedatastructurecanbeclassifiedinto thefollowingtypes:

1. CircularQueue

2. Deque

3. PriorityQueue

Applicationsof Queues:

.Printingjobmanagement

.clientservermodel

.CPUscheduling-inwhichprocessisexecuted first

.Batchprocessing–manageincomingjobsandprocesstheminorder.

.ResourceAllocation

.Simulation-lineofcustomerswaitingforbank

.Inprocesscommunication–processandmultithreadsystem

64

DS Page1

DICTIONARIES:

Moudle-2

Dictionaryisacollectionofpairsofkeyandvaluewhereeveryvalueisassociated with
thecorresponding key.

Basicoperationsthatcanbeperformedondictionaryare:

1. Insertionofvalueinthedictionary
2. Deletionofparticularvaluefromdictionary
3. Searchingofaspecificvalue withthehelp ofkey

LinearListRepresentation

Thedictionarycanberepresentedasalinearlist.Thelinearlistisacollectionofpairand value.There
are two method of representing linear list.

1. SortedArray-Anarraydatastructureisusedtoimplementthedictionary.
2. SortedChain-Alinkedlistdatastructureisusedtoimplementthedictionary

Insertionofnew nodein thedictionary:

Considerthatinitiallydictionaryisempty thenhead
= NULL

Wewillcreateanewnodewithsomekeyandvalue containedinit.

NowasheadisNULL,thisnewnodebecomeshead.Hencethedictionarycontainsonlyone record.

this node will be ‗curr‘ and ‗prev‘ as well. The ‗cuur‘ node will always point to current

visiting node and ‗prev‘ will always point to the node previous to ‗curr‘ node. As now there

is only one node in the list mark as ‗curr‘ node as ‗prev‘ node.

New/head/curr/prev

Insertarecord,key=4andvalue=20,

New

Comparethekeyvalueof‗curr‘and‗New‘node.IfNew->key>Curr->keythenattach New node to

‗curr‘ node.

prev/head New curr->next=New

prev=curr

Addanewnode<7,80>then

4 20 NULL

NULL 10 1

NULL 20 4

10 1

DS Page2

head/prev curr New

4 20

Ifweinsert<3,15>thenwehavetosearchforitproperpositionbycomparingkey

value.(curr->key < New->key) is false. Hence else part will get executed.

3 15

10 1 7 80 NULL

7 80 NULL

10 1 20 4

DS Page3

Thedelete operation:

Case 1: Initially assign ‗head‘ node as ‗curr‘ node.Then ask for a key value of the node

which is to be deleted. Then starting from head node key value of each jode is cked and

compared with the desired node‘s key value. We will get node which is to be deleted in

variable ‗curr‘. The node given by variable ‗prev‘ keeps track of previous node of ‗cuu‘

node. For eg, delete node with key value 4 then

cur

10

se2:

Ifthenodetobedeletedishead

nodei.e.. if(curr==head)

Then,simplymake‗head‘nodeasnextnodeanddelete‗curr‘

curr head

Hencethelist becomes

head

SKIPLISTREPRESENTATION

Skiplistisavariantlistforthelinkedlist.Skiplistsaremadeupof a series
of nodes connected one after the other. Each node contains a key and value pair as
wellasoneormorereferences,orpointers,tonodesfurtheralonginthelist.Thenumberof
references each node contains is determined randomly. This gives skip lists their

probabilistic nature, and the number of references a node contains is called its node level.
There are two special nodes in the skip list one is head node which is the starting node of
thelist and tail node is the last node of the list

15 3 20 4 1 7 80 NULL

7 80 NULL

7 80 NULL

10 1 15 3 20 4

15 3 20 4

DS Page4

1 2 3 4 5 6 7
head tail

node node

The skip list is an efficient implementation of dictionary using sorted chain. This is

becauseinskiplisteachnodeconsistsofforwardreferencesofmorethanonenodeata time.

Eg:

null

Now to search any node from above given sorted chain we have to search the sortedchain

from head nodeby visiting each node. But this searching timecan be reduced if we add

one level in every alternate node. This extra level contains the forward pointer of some

node.That means in sorted chain come nodes can holds pointers to more than one node.

NULL

Ifwewanttosearchnode40fromabovechaintherewewillrequirecomparativelyless time.This

search again can be made efficient if we add few more pointers forward references.

NULL

skip list

Theindividualnodelookslikethis:

Key value arrayof pointer

Element *next

DS Page5

WorkingoftheSkiplist

Let's take an example to understand the working of the skip list. In this example, we have 14 nodes, such that these nodes are divided into

two layers, as shown in the diagram.

Thelowerlayerisacommonlinethatlinksallnodes,andthetoplayerisanexpresslinethatlinksonlythemainnodes,asyoucanseeinthe diagram.

Suppose you want tofind 47in this example. You willstart the search from the first nodeof the express line and continue running

ontheexpress line until you find a node that is equal a 47 or more than 47.

You can see in the example that 47 doesnot exist in the expressline, so you search fora node of lessthan 47, which is40.Now, you go to the

normal line with the help of 40, and search the 47, as shown in the diagram.

SkipListBasicOperations

Therearethefollowingtypesofoperationsintheskiplist.

o Insertionoperation:Itisusedtoaddanewnodetoaparticularlocationinaspecificsituation.

o Deletionoperation:Itisusedtodeleteanodeinaspecificsituation.

o SearchOperation:Thesearchoperationisusedtosearch aparticularnodeinaskiplist.

Example1:Createaskiplist,wewanttoinsert thesefollowingkeysin theemptyskiplist.

Note: Onceyoufind anode likethis on the "express line", yougofromthis nodetoa "normallane"usinga pointer, andwhenyousearchforthenode in the

normal line.

1. 6withlevel1.

2. 29withlevel1.

3. 22withlevel4.

4. 9withlevel3.

5. 17withlevel1.

6. 4withlevel2.

Ans:

DS Page6

Step1:Insert6withlevel1

Step2:Insert29with level1

Step3:Insert22withlevel4

DS Page7

Step4:Insert9withlevel3

Step5:Insert17withlevel1

Step6:Insert4withlevel2

DS Page8

Example2:Considerthisexamplewherewewanttosearchforkey17.

Ans:

DS Page9

AdvantagesoftheSkiplist

1. Ifyouwanttoinsertanewnodeintheskiplist,thenitwillinsertthenodeveryfastbecausetherearenorotationsintheskiplist.

2. Theskiplistissimpletoimplementascomparedtothehashtableandthebinarysearchtree.

3. Itisverysimpletofindanodeinthelistbecauseitstoresthenodesinsortedform.

4. Theskiplistalgorithmcanbemodifiedveryeasilyinamorespecificstructure,suchasindexableskiplists,trees,orpriority queues.

5. Theskiplistisarobustandreliablelist.

DisadvantagesoftheSkiplist

1. Itrequiresmorememorythanthebalancedtree.

2. Reversesearchingisnotallowed.

3. Theskiplistsearchesthenodemuchslowerthanthelinkedlist.

Searching:

Searching for a key within a skip list begins with starting at header at the overall list

level and moving forward in the list comparing node keys to the key_val. If the node key is

less than thekey_val,thesearchcontinuesmovingforwardatthesamelevel.Ifothe other hand,

thenode key is equal to or greater than the key_val, the search drops one level and continues

forward. This process continues until the desired key_val has been found if it is present in

the skip list. If it is not, the search will either continue at the end of the list or until the first

key witha value greater than the search key is found.

Insertion:

Therearetwotasksthatshould bedonebeforeinsertion operation:

1. Before insertion of any node the place for this new node in the skip list is searched.

Hence before any insertion to take place the search routine executes. The last[] array in

the search routine is used to keep track of the references to the nodes where the search,

drops down one level.

2. Thelevelforthenewnodeisretrievedbytheroutinerandomelevel()

HASHTABLEREPRESENTATION:

 Hash table is a data structure used for storing and retrieving data very quickly. Insertion of

data in the hash table is based on the key value. Hence every entry in the hash table is

associated with some key.

 Using the hash key the required piece of data can be searched in the hash table by few or

morekeycomparisons. The searching time isthen dependent uponthesize ofthe hashtable.

 The effective representation of dictionary can be done using hash table. We can place the

dictionary entries in the hash table using hash function.

Hashing is the process of generating a value from a text or a list of numbers using a mathematical

function known as a hash function.

https://www.geeksforgeeks.org/what-are-hash-functions-and-how-to-choose-a-good-hash-function/

DS Page10

HASH FUNCTION:

A Hash Function is a function that converts a given numeric or alphanumeric key to a

small practical integer value. The mapped integer value is used as an index in the hash table. In

simple terms, a hash function maps a significantnumber or string to a small integer that can be used

as the index in the hash table.

The pair is of the form (key, value), where for a given key, one can find a value using

some kind of a “function” that maps keys to values. The key for a given object can be calculated

using a function called a hash function. For example, given an array A, if i is the key, then we can

find the value by simply looking up A[i].

TypesofHashfunctions:

There are many hash functions that use numeric or alphanumeric keys. This article focuses on

discussing different hash functions:

1. DivisionMethod.

2. MidSquareMethod.

3. FoldingMethod.

4. MultiplicationMethod.

1. DivisionMethod:

This is the most simple and easiest method to generate a hash value. The hash function

divides the value k by M and then uses the remainder obtained.

Formula:

h(K)=kmodM

Here,

kisthekeyvalue,and

Misthesizeofthehashtable.

Itisbestsuitedthat M isaprimenumberasthatcanmakesurethekeysaremoreuniformly distributed. The

hash function is dependent upon the remainder of a division.

Example:

Iftherecord54,72,89,37isplaced inthe hashtableand ifthe tablesize is10 then

h(key) = record % table size

54%10=4

DS Page11

72%10=2

89%10=9

37%10=7

2. MidSquareMethod:

Themid-squaremethodisaverygoodhashingmethod.Itinvolvestwostepstocomputethe hash value-

1. Squarethevalueofthekey ki.e.k2

2. Extractthemiddlerdigitsasthehashvalue.

Formula:

h(K)= h(kxk)

Here,

kisthekeyvalue.

Thevalueofrcanbedecidedbasedonthesizeofthetable.

Example:

Considerthatifwewanttoplace arecord3111

then31112=9678321forthehashtableofsize1000

H(3111) = 783 (the middle 3 digits)

3. DigitFoldingMethod:

Thismethodinvolvestwosteps:

1. Divide the key-value k into a number of parts i.e. k1, k2, k3,….,kn, where each part has

thesame number of digits exceptfor the last part that can have lesser digits than the other parts.

2. Addtheindividualparts.Thehashvalueisobtainedbyignoringthelastcarryifany.

Formula:

k=k1,k2,k3,k4,…..,kn

s=k1+k2+k3+k4+….+knh(K)=s

Here,

sisobtainedbyaddingthepartsofthekeyk

Example:

k=12345

DS Page12

k1=12,k2=34,k3 =5

s =k1+k2+k3

=12+34+5

=51

h(K) =51

Note:

The number of digits in each part varies depending upon the size of the hash table. Suppose for

example the size of the hash table is 100, then each part must have two digits except for the last

part which can have a lesser number of digits.

4. MultiplicationMethod

Thismethodinvolvesthefollowingsteps:

1. ChooseaconstantvalueAsuchthat0<A<1.

2. MultiplythekeyvaluewithA.

3. ExtractthefractionalpartofkA.

4. Multiplytheresultoftheabovestepbythesizeofthehashtablei.e.M.

5. The resultinghashvalueisobtainedby takingtheflooroftheresultobtainedinstep4.

Formula:

h(K)=floor(M(kAmod1))

Here,

Misthesizeofthehashtable.

kisthekeyvalue.

Aisaconstantvalue.

Example:

k=12345

A=0.357840

M=100

h(12345)=floor[100(12345*0.357840mod1)]

=floor[100(4417.5348mod1)]

DS Page13

=floor[100(0.5348)]

=floor[53.48]

=53

(OR)

Theformulaforcomputingthehashkeyis:

H(key)=floor(p*(fractionalpartofkey*A))wherepisintegerconstant andAisconstant real number.

DonaldKnuthsuggestedtouseconstantA=0.61803398987

Ifkey107andp=50then

H(key)=floor(50*(107*0.61803398987))

=floor(3306.4818458045)

=3306

At3306locationinthehashtabletherecord 107willbeplaced.

COLLISION:

The hash function is a function that returns the key value using which the record

can be placed in the hash table. Thus this functionhelps us inplacing the record in the hash table

at appropriate position and due to this we can retrieve the record directly from that location. This

function need to be designed very carefully and it should not return the samehash key address for

two different records. This is an undesirable situation in hashing.

Definition:

The situation in which the hash function returns the same hash key (home bucket) for

more than one record is called collision and two same hash keys returned for different records is

called synonym.

Similarly when there is no room for a new pair in the hash table then such a situation is

called overflow. Sometimes when we handle collision it may lead to overflow conditions.

Collision and overflow show the poor hash functions.

Forexample:

Considerahashfunction.

H(key)=recordkey%10 having thehashtablesize of10

DS Page14

Therecordkeystobeplacedare

67 131,44, 43, 78, 19, 36, 57and77

131%10=1

44%10=4

43%10=3

78%10=8

19%10=9

36%10=6

57%10=7

77%10=7

Nowif wetrytoplace 77inthehashtablethen weget thehashkeytobe 7and at index7 already

the recordkey 57 is placed. This situation is called collision. From theindex7 ifwelook for next

vacant position at subsequent indices 8,9 then we find that there is no room to place 77in the hash

table. This situation is called overflow.

COLLISIONRESOLUTIONTECHNIQUES:

If collision occurs then itshouldbe handledby applying some techniques.Such a techniqueis called

collision handling technique.

1. Chaining

2. Openaddressing(linearprobing)

3.Quadratic probing

4. Doublehashing

5. Doublehashing

6.Rehashing

CHAINING:

Incollisionhandlingmethodchainingisaconceptwhichintroducesanadditional fieldwith data

i.e. chain. A separate chain table is maintained for colliding data. When collision occurs then

alinked list(chain) is maintained at the home bucket.

ForExample:

DS Page15

Considerthekeystobeplacedintheirhomebucketsare 131,

3, 4, 21, 61, 7, 97, 8, 9

thenwewillapplya hash functionasH(key)=key%D

Where D is the size of table. The hash table will be-

Here D = 10

Achainismaintainedforcollidingelements.forinstance131hasahomebucket(key)1. similarlykey 21

and 61 demand for home bucket 1. Hence a chain is maintained at index 1.

OPENADDRESSING–LINEARPROBING:

This is the easiest method of handling collision. When collision occurs i.e. when two

records demand for the same home bucket in the hash table then collision can be solved by

placing the second record linearly down whenever the empty bucket is found. When use linear

probing (open addressing), the hash table is represented as a one-dimensional array with indices

that range from 0 to the desired table size-1. Before inserting any elements into this table, we

must initialize the table to represent the situation where all slots are empty. This allows us to

detect overflows and collisions when we inset elements into the table. Then using some suitable

hash function the element can be inserted into the hash table.

Forexample:

Considerthatfollowingkeysaretobeinsertedinthehashtable 131, 4,

8, 7, 21, 5, 31, 61, 9, 29

Initially,wewillputthefollowing keysinthehashtable.

WewilluseDivisionhashfunction.That meansthekeysareplacedusingtheformula H(key) =

key % tablesize

H(key)=key% 10

Forinstancetheelement131canbeplaced at

DS Page16

H(key)= 131%10

=1

Index1willbethehome bucket for131.Continuing inthis fashionwewillplace4,8,7. Now the

next key to be inserted is 21. According to the hash function

H(key)=21%10

H(key)=1

But the index 1 location is already occupied by 131 i.e. collision occurs. To resolve this collision

we will linearly move down and at the next empty location we will prob the element. Therefore

21 will be placed at the index 2. If the next element is 5 then we get the home bucket for 5 as

index 5 and this bucket is emptyso we will put the element 5 at index 5.

The next record key is 9. According to decision hash function it demands for the home bucket 9.

Hence we will place 9 at index 9. Now the next final record key 29 and it hashes a key 9. But

home bucket 9 is already occupied. And there is no next empty bucket as the table size is limited

to index 9. The overflow occurs. To handle it we move back to bucket 0 and is the location over

there is empty 29 will be placed at 0th index.

QUADRATICPROBING:

Quadratic probing operates by taking the original hash value and addingsuccessive values

of an arbitrary quadratic polynomial to the starting value. This method uses following formula.

DS Page17

where mcan betablesizeoranyprimenumber.

Example:

wehavealist ofsize20(m=20).Wewant toputsomeelementsinlinearprobing fashion. The

elements are {96, 48, 63, 29, 87, 77, 48, 65, 69, 94, 61}

DOUBLE HASHING:

Double hashing is technique in which a second hash function is applied to the key when a

collision occurs. By applying the second hash function we will get the number of positions from

the point of collision to insert.

Therearetwoimportantrulestobefollowedforthesecondfunction:

 Itmustneverevaluatetozero.

 Mustmakesurethatallcellscanbeprobed. The

formula to be used for double hashing is:

DS Page18

whereMisaprimenumbersmallerthanthesizeofthetable.

Considerthefollowingelementstobeplacedinthehashtableofsize10 37, 90,

45, 22, 17, 49, 55

InitiallyinserttheelementsusingtheformulaforH1(key). Insert

37, 90, 45, 22,49

H1(37)=37%10=

7

H1(90)=90%10=

0

H1(45)=45%10=

5

H1(22)=22%10=

2

H1(49)=49%10=

9

Nowif17tobeinsertedthen

H1(17) = 17 % 10 = 7

H2(key) =M–(key%M)

HereMisprimenumbersmallerthanthesizeofthetable.Prime numbersmallerthantablesize 10 is 7

Hence M =

7H2(17)=7-(17%7)

=7–3=4

DS Page19

Thatmeanswehavetoinserttheelement17at4placesfrom37.Inshortwehajumps. Therefore the 17 will

be placed at index 1.

Nowtoinsertnumber55

H1(55) =55%10=5 Collision

H2(55)= 7-(55%7)

=7–6=1

That meanswehavetotakeonejumpfromindex5toplace55. Finally

the hash table will be –

DS Page20

REHASHING:

When the hash table becomes nearly full, the number of collisions increases, thereby

degrading the performance of insertion and search operations. In such cases, a better option is to

create a new hash table with size double of the original hash table.

Alltheentries intheoriginalhashtablewillthen havetobemovedtothe newhash table. This is

done bytaking each entry, computing its new hash value, and then inserting it inthe new hash

table.

Though rehashing seems to be a simple process, it is quite expensive and must therefore

not be done frequently. Consider the hash table of size 5 given below. The hash function used is

h(x) = x % 5. Rehash the entries into to a new hash table.

Advantages:

1. Thistechniqueprovidestheprogrammeraflexibilityto enlargethetablesizeifrequired.

2. Onlythespacegetsdoubled withsimplehashfunctionwhichavoidsoccurrenceofcollisions.

ExtendibleHashing:

Extendible hashing is a dynamic approach to managing data. In this hashing method, flexibility

is acrucial factor. This method catersto flexibility so that even the hashing function dynamically

changes according to the situation and data type.

Algorithm

Thefollowingillustrationrepresentstheinitialphasesofour hashtable:

DS Page21

Directories and buckets are two key terms in this algorithm. Buckets are the holders of hashed

data, while directories are the holders of pointers pointing towards these buckets. Each directory

has a unique ID.

The following pointsexplainhowthealgorithmwork:

1. Initializethebucketdepthsandtheglobaldepthofthedirectories.

2. Convertdataintoabinaryrepresentation.

3. Considerthe"globaldepth"numberoftheleastsignificantbits(LSBs)ofdata.

4. Mapthedataaccording totheIDofadirectory.

5. Checkforthefollowingconditionsifabucket overflows(ifthenumberofelementsina bucket

exceeds the set limit):

I. Global depth == bucket depth: Split the bucket into two and increment the

globaldepthandthebuckets'depth.Re-hashtheelementsthat werepresent inthe split

bucket.

II. Globaldepth>bucketdepth:Splitthebucketintotwoandincrementthebucket depth
only. Re-hash the elements that were present in the split bucket.

6. Repeatthestepsaboveforeachelement.

Example

Let'stakethefollowingexampleto seehowthis hashingmethod workswhere:

 Data= {28,4,19,1,22,16,12,0,5,7}

 Bucket limit=3

Convertthedataintobinaryrepresentation:

 28=11100

 4=00100

 19=10011

 1=00001

 22=10110

 16=10000
 12=01100

 0=00000

 5=00101

 7=00111

DS Page22

Thefollowingslideshowrepresentstheremaining steps:

DS Page23

DS Page24

DS Page25

DS Page26

MODULE-3

TREES

Tree is non-linear data structure that consists of root node and potentially many levels of

additional nodes that form a hierarchy.

A tree is recursively defined as a set of one or more nodes where one node is designated as

the root of the tree and all the remaining nodes can be partitioned into non-empty sets each of which is a

sub-tree of the root.

Where nodeA isthe rootnode;nodesB,C,andDarechildrenoftherootnode.

BasicTerminology:

Rootnode:TherootnodeRisthetopmostnodeinthetree.IfR=NULL,thenitmeansthetreeis empty.

Sub-trees:Iftheroot nodeRisnot NULL,thenthetreesT1,T2,andT3arecalled thesub-treesofR.

Leafnode:Anodethathasnochildren is calledtheleafnodeortheterminalnode.

Path: Asequenceofconsecutiveedgesiscalled apath. Forexample, in abovediagram, the pathfromthe root

node A to node I is given as: A, D, and I.

Ancestornode:Anancestor ofanodeis anypredecessornodeonthepathfromroot tothat node.

The root node does not have any ancestors. In the tree given in above diagram, nodes A, C, and G are the

ancestors of node K.

Descendant node: A descendant node is any successor node on any path from the node to a leaf node.

Leaf nodes do not have any descendants. In the tree given in the above diagram, nodes C, G, J, and K are

the descendants of node A.

Level number: Every node in the tree is assigned a level number in such a way that the root node is at

level 0, children of the root node are at level number 1. Thus, every node is at one level higher than its

parent. So, all child nodes have a level number given byparent’s level number + 1.

Degree: Degree of a node is equal to the number of children that a node has. The degree of a leaf node is

zero.

In-degree: In-degree of anodeis the numberofedges arriving at that node.

Out-degree: Out-degreeofanodeisthenumberofedgesleavingthat node.

Siblings: Nodes with the same parent.

Height:Numberofnodes whichmustbetraversedfromtherootto thereachaleafofatree.

ImplementationofTree:

The tree data structure can be created by creating the nodes dynamically with the help of

the pointers. The tree in the memory can be represented as shown below:

The representation of the tree data structure in the memory. In the above structure, the

node contains three fields. The second field stores the data; the first field stores the address of the

left child, and the third field stores the address of the right child.

Inprogramming,thestructureofanodecanbedefined as:

structnode

{

intdata;

struct node *left;

structnode*right;

}

The above structure can only be defined for the binary trees because the binary tree can

have utmost two children, and generic trees can have more than two children. The structure ofthe

node for generic trees would be different as compared to the binary tree.

Applicationsoftrees

Thefollowing aretheapplicationsoftrees:

o Storing naturally hierarchical data: Trees are used to store the data in the hierarchical

structure. For example, the file system. The file system stored on the disc drive, the file

and folder are inthe formofthenaturallyhierarchicaldataandstored intheformoftrees.

o Organize data: It is used to organize data for efficient insertion, deletion and searching.

For example, a binary tree has a logN time for searching an element.

o Trie: Itisaspecialkindoftreethatisusedtostorethedictionary.Itisafastandefficient way for

dynamic spell checking.

o Heap: It is also a tree data structure implemented using arrays. It is used to implement

priorityqueues.

o B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to implement

indexing in databases.

o Routing table: The tree data structure is also used tostore the data in routing tables in the

routers.

BinaryTrees:

Abinarytreeisadatastructurethatisdefinedas acollectionofelements called nodes. In abinary

tree,thetopmostelementis called therootnode,and eachnodehas0,1,orat themost2 children. A node

that has zero children is called a leaf node or a terminal node. Every node contains a data

element, a left pointer which points to the left child, and a right pointer which points to the right

child. The root element is pointed by a 'root' pointer. If root = NULL, then it means the tree is

empty.

In the above diagram, R is the root node and the two trees T1 and T2 are called the left

and right sub-trees of R. T1 is said to be the left successor of R. Likewise, T2 is called the right

successor of R. Note that the left sub-tree of the root node consists of thenodes: 2, 4, 5, 8, and 9.

Similarly, the right sub-tree ofthe root node consists ofnodes: 3, 6, 7, 10, 11, and 12.

In the tree, root node 1 has two successors: 2 and 3. Node 2 has two successor nodes: 4

and 5. Node 4 has two successors: 8 and 9. Node 5 has no successor. Node 3 has two successor

nodes:6and7.Node6hastwosuccessors:10and11.Finally,node7hasonlyonesuccessor:

12.

A binary tree is recursive by definition as every node in the tree contains a left sub-tree

and a right sub-tree. Even the terminal nodes contain an empty left sub-tree and an empty right

sub-tree. In the above diagram, nodes 5, 8, 9, 10, 11, and 12 have no successors and thus said to

have empty sub-trees.

Terminology:

Parent: If N is any node in T that has left successor S1 and right successor S2, then N is called

the parent of S1 and S2. Correspondingly, S1 and S2 are called the left child and the right childof

N. Every node other than the root node has a parent.

Level number: Every node in the binary tree is assigned a level number . The root node is

defined to be at level 0. The left and the right child of the root node have a level number 1.

Similarly,everynodeisatonelevelhigherthanitsparents.Soallchildnodesaredefinedtohave level

number as parent's level number + 1.

Degree of a node It is equal to the number of children that a node has. The degree of a leaf node

is zero. For example, in the tree, degree of node 4 is 2, degree of node 5 is zero and degree of

node 7 is 1.

Sibling: All nodes that are at the same level and share the same parent are called siblings

(brothers).Forexample,nodes2and3;nodes4and5;nodes6and7;nodes8and9;andnodes

10and11are siblings.

Leaf node: Anodethat hasnochildreniscalled aleafnodeoraterminal node.Theleafnodesin the tree

are: 8, 9, 5, 10, 11, and 12.

Similar binary trees: Two binary trees T and T¢ are said to be similar if both these trees have

the same structure.

Copies: Two binary trees T and T¢ are said to be copies if they have similar structure and if they

have same content at the corresponding nodes. Below diagram shows that T¢ is a copyof T.

Edge: It is the line connecting a node N to any of its successors. A binary tree of n nodes has

exactly n – 1 edges because every node except the root node is connected to its parent via an

edge.

Path: A sequence of consecutive edges. For example, in the above diagram, the path from the

root node to the node 8 is given as: 1, 2, 4, and 8.

Depth: The depth of a node N is given as the length of the path from the root R to the node N.

The depth of the root node is zero.

Height of a tree: It is the total number of nodes on the path from the root node to the deepest

node in the tree. A tree with only a root node has a height of 1. A binary tree of height h has at

leasthnodesand atmost2h–1nodes.Thisisbecauseeverylevel willhaveatleastonenodeand can have at

most 2 nodes. So, if every level has two nodes then a tree with height h will have at the most 2h –

1 nodes as at level 0, there is only one element called the root. The height of a binarytree with n

nodes is at least log2(n+1) and at most n.

In-degree/out-degree of a node: It is the number of edges arriving at a node. The root node is

the only node thathas an in-degree equal to zero. Similarly, out-degree of a node is the number of

edges leaving that node.

Binary trees are commonly used to implement binary search trees, expression trees,

tournament trees, and binary heaps.

Therearedifferent typesofbinarytreesandtheyare...

1.Strictly Binary Tree: In a binary tree, every node can have a maximum of two children.

But in strictly binary tree, every node should have exactly two children or none. That

means every internal node must have exactly two children. A strictly Binary Tree can be

defined as follows... Abinarytreeinwhicheverynodehaseithertwoorzero numberof

children is called Strictly Binary Tree Strictly binary tree is also called as Full Binary

Tree or Proper Binary Tree or 2-Tree.

Strictlybinarytreedatastructureisusedtorepresentmathematicalexpressions.

Complete Binary Tree: In a binary tree, every node can have a maximum of two

children. But in strictly binary tree, every node should have exactly two children or none

and in complete binary tree all the nodes must have exactly two children and at every

level of complete binary tree there must be 2level number of nodes. For example at level2

there must be 22 = 4 nodes and at level 3 there must be 23 = 8 nodes. A binary tree in

which every internal node has exactly two children and all leaf nodes are at same level is

called Complete BinaryTree. Complete binarytree is also called as Perfect BinaryTree

Extended Binary Tree: A binary tree can be converted into Full Binary tree by adding

dummy nodes to existing nodes wherever required. The full binary tree obtained by

adding dummy nodes to a binary tree is called as Extended Binary Tree.

In above figure, a normal binary tree is converted into full binary tree by adding dummy

nodes (In pink colour).

BinaryTreeRepresentations

Abinarytreedatastructureisrepresentedusingtwomethods. Those

methods are as follows:

1. ArrayRepresentation2. LinkedListRepresentation

Sequentialrepresentation ofbinarytrees:

Sequential representation of trees is done using single or one-dimensional arrays. Though

it is the simplest technique for memory representation, it is inefficient as it requires a lot of

memory space. A sequential binary tree follows the following rules:

1. Aone-dimensionalarray,calledTREE,isusedtostoretheelementsoftree.

2. The root of the tree will be stored in the firstlocation. That is, TREE will store the data

of the root element.

3. Themaximumsizeof thearrayTREEisgivenas(2h–1),wherehistheheightof the tree.

4. An empty tree orsub-treeisspecifiedusingNULL.If TREE=NULL,thenthetreeis empty.

Theabovediagramshowsthebinarytreeanditscorrespondingsequentialrepresentation.Thetreehas11 nodes

and its height is 4.

Linked representationofbinarytrees:

Inthelinkedrepresentationofabinarytree,everynodewillhavethreeparts:thedataelement,a pointer to the

left node, and a pointer to the right node.

SoinC,thebinarytreeisbuilt withanodetypegivenbelow. struct node

{

structnode*left;

int data;

structnode*right;

};

Every binary tree has a pointer ROOT, which points to the root element (topmost element) of the tree.

If ROOT = NULL, then the tree is empty. The schematic diagram of the linked representation of the

binary tree is shown below. In the below diagram, the left position is used to point to the left child of the

node or to store the address of the left child of the node. The middle position is used to store the data.

Finally, the right position is used to point to the right child of the node or to store the address of the right

child of the node. Empty sub-trees are represented using X (meaning NULL).

TreeTraversals(Inorder,PreorderandPostorder):

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head) node.

That is, we cannot randomly access a node in a tree. There are three ways which we use to

traverse a tree −

 In-orderTraversal

 Pre-orderTraversal

 Post-orderTraversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the

values it contains.

In-orderTraversal:

 In this traversal method,theleftsubtree isvisitedfirst, then therootandlater theright sub-

tree. We should always remember that every node may represent a subtree itself.

 Ifabinarytreeistraversed in-order,theoutputwillproducesortedkeyvaluesinan ascending

order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of inorder

traversal of this tree will be −

D→B→E→A→F→C→G

Algorithm

Untilallnodesaretraversed−

Step 1−Recursivelytraverse leftsubtree.

Step2−Visitrootnode.

Step3−Recursivelytraverserightsubtree.

Pre-orderTraversal

In this traversal method, the root node is visited first, then the left subtree and finally the right

subtree.

Westartfrom A, andfollowingpre-ordertraversal,wefirstvisit A itselfandthenmovetoitsleft subtree

B. B is also traversed pre-order. The process goes on until all the nodes are visited. The output of

pre-order traversal of this tree will be −

A→B→D→E→C→F→G

Algorithm

Untilallnodesaretraversed−

Step1−Visitrootnode.

Step2−Recursivelytraverseleftsubtree.

Step3−Recursivelytraverserightsubtree.

Post-orderTraversal

In this traversal method, the rootnode is visitedlast, hence the name.Firstwe traverse the

left subtree, then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit the left subtree B. B is also

traversedpost-order.Theprocessgoesonuntilallthenodesarevisited.Theoutputofpost-order

traversalofthistreewill be−

D→E→B→F→G→C→A

Algorithm

Untilallnodesaretraversed−

Step 1 − Recursively traverse left subtree.

Step2−Recursivelytraverserightsubtree.

Step 3 − Visit root node.

ImplementationinC:

//TreetraversalinC

#include <stdio.h>

#include <stdlib.h>

struct node {

intitem;

struct node* left;

structnode*right;

};

//Inordertraversal

voidinorderTraversal(structnode*root){ if

(root == NULL) return;

inorderTraversal(root->left);

printf("%d ->", root->item);

inorderTraversal(root->right);

}

//preorderTraversaltraversal

voidpreorderTraversal(structnode*root){ if

(root == NULL) return;

printf("%d ->", root->item);

preorderTraversal(root->left);

preorderTraversal(root->right);

}

//postorderTraversaltraversal

voidpostorderTraversal(structnode*root){ if

(root == NULL) return;

postorderTraversal(root->left);

postorderTraversal(root->right);printf("%d

->", root->item);

}

//CreateanewNode

structnode*createNode(value){

structnode*newNode=malloc(sizeof(structnode));

newNode->item = value;

newNode->left = NULL;

newNode->right=NULL;

return newNode;

}

//Insertontheleftofthenode

structnode*insertLeft(structnode*root,intvalue){

root->left = createNode(value);

returnroot->left;

}

//Insertonthe rightofthenode

structnode*insertRight(structnode*root,intvalue){

root->right = createNode(value);

returnroot->right;

}

intmain(){

structnode*root=createNode(1);

insertLeft(root, 12);

insertRight(root,9);

insertLeft(root->left,5);

insertRight(root->left, 6);

printf("Inorder traversal \n");

inorderTraversal(root);

printf("\nPreordertraversal\n");

preorderTraversal(root);

printf("\nPostordertraversal

\n"postorderTraversal(root);

}

BINARYSEARCHTREES:

A binary search tree, also known as an ordered binary tree, is a variant of binary trees in which the

nodes are arranged in an order. In a binary search tree, all the nodes in the left sub-tree have a value less

than that of the root node. Correspondingly, all the nodes in the right sub-tree have a value either equal to

or greater than the root node. The same rule is applicable to everysub-tree in the tree.

The root node is 39. The left sub-tree of the root node consists of nodes 9, 10, 18, 19, 21, 27, 28, 29,

and 36. All these nodes have smaller values than the root node. The rightsub-tree of the root node consists

of nodes 40, 45, 54, 59, 60, and 65. Recursively, each of the sub-trees also obeys the binary search tree

constraint. For example, in the left sub-tree of the root node, 27 is the root and all elements in its left sub-

tree (9, 10, 18, 19, 21) aresmaller than 27, while all nodes in its right sub-tree (28, 29, and 36) are greater

than the root node’s value.

Since the nodes in a binary search tree are ordered, the time needed to search an element in the tree is

greatly reduced. Whenever we search for an element, we do not need to traverse the entire tree. At every

node, we get a hint regarding which sub-tree to search in. For example, in the given tree, if we have to

search for 29, then we know that we have to scan only the leftsub-tree.If the valueis presentin the tree, it

will only be in the left sub-tree, as 29 is smaller than 39 (the root node’s value). The left sub-tree has a

root node with the value 27. Since29 is greater than 27, wewill move to the right sub-tree, where wewill

find the element. Thus, the average running time of a search operation is O(log2 n), as at every step, we

eliminate half of the sub-tree from the search process. Due to its efficiency in searching elements, binary

search trees are widely used in dictionary problems where the code always inserts and searches the

elements that are indexed by some key value.

Createabinarysearchtreeusingthefollowing dataelements:

45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81

Solution:

ThebasicoperationsofaBinarySearchTree/Implementation

A. Search- Searchesanelementinatree.

B. Insert-Insertsanelementina tree.

C. Traversing-Processingofelements

Insertionoperation:

In a binary search tree, the insertion operation is performed with O(log n) time complexity. In binary

search tree, new node is always inserted as a leaf node.

Addingavalueto BSTcanbedividedinto two stages:

• Searchforaplacetoputanewelement;

• Insertthenewelementtothisplace.

Theinsertionoperationisperformedasfollows...

Step1:CreateanewNodewithgivenvalueandsetitsleftandright toNULL.

Step2:CheckwhethertreeisEmpty.

Step 3:IfthetreeisEmpty,thensetset rootto newNode.

Step 4: Ifthe tree is Not Empty, thencheck whether value ofnewNode is smaller or larger thanthe node

(here it is root node).

Step 5: Ifnew Node is smaller thanor equaltothe node, then move to its left child. IfnewNode is larger

than the node, then move to its right child.

Step6:Repeattheabove stepuntilwereachtoaleafnode(e.i.,reachto NULL).

Step 7: After reaching a leaf node, then insert the new Node asleft child if new Nodeis smaller or equal to

that leaf else insert it as right child.

ThenewnodewillalwaysreplaceaNULLreference.

Example:

AlgorithmtoInsertagivenvalueinBinarySearchTree:

DeleteOperation:

Thedeletefunction deletes a node from the binary search tree. However, utmost care should be taken that

the properties of the binary search tree are not violated and nodes are not lost in the process. We will take

up three cases in this section and discuss how a node is deleted from a binarysearch tree.

Basically, it canbedividedintotwo stages:

1. Searchforanodeto remove.

2. If the node is found, remove that element. For that we will use simple recursion to find the node and

delete it from the tree.

Thealgorithmhas3caseswhiledeletingnode:

1. Nodetobedeleted isaleaf node(nochildren).

2. Nodetobedeletedhasonechild.

3. Nodetobedeletedhastwochildren(leftand rightchildnodes).

Case1:

DeletingaNodethat hasNoChildren:

Look at the binary search tree. If we have to delete node 78, we can simply remove this node without

any issue. This is the simplest case of deletion.

Case2:

DeletingaNode withOneChild:

Tohandlethiscase,thenode’schildisset asthechildofthenode’sparent. Inother words,replacethe node with

its child. Now, if the node is the left child of its parent, the node’s child becomes the left child

ofthenode’sparent. Correspondingly, ifthenodeis theright child ofits parent, thenode’schild becomes the

right child of the node’s parent. Look at the binary search tree shown below and see how deletion of node

54 is handled.

Case3:

DeletingaNodewithTwoChildren:

Tohandlethis case, replacethenode’svaluewith its in-orderpredecessor (largest valuein theleft sub- tree)

or in-order successor (smallest value in the right sub-tree). The in-order predecessor or the successor can

then be deleted using any of the above cases. Look at the binary search tree given in below figure and see

how deletion of node with value 56 is handled.

This deletion could also be handled by replacing node 56 with itsin-order successor, as shown in below

diagram.

AlgorithmtoDeleteaNodefromBinarySearchTree:

Thealgorithmtodeletea nodefromabinarysearch tree:

In Step 1 of the algorithm, we first check if TREE=NULL, because if it is true, then the node to be

deleted is not present in the tree. However, if that is not the case, then we check if the value to be deleted

is less than the current node’s data. In case the value is less, we call the algorithm recursively on the

node’s left sub-tree, otherwise the algorithm is called recursively on the node’s right sub-tree. Note that if

we have found the node whose value is equal to VAL, then we check which case of deletion it is. If the

node to be deleted has both left and right children, then we find the in-order predecessor of the node by

calling findLargestNode(TREE -> LEFT) and replace the current node’s value with that of its in-order

predecessor. Then, we call Delete(TREE -> LEFT, TEMP -> DATA) to delete the initial node of the in-

order predecessor. Thus, we reduce the case 3 of deletion into either case 1 or case 2 of deletion. If the

nodetobedeleteddoesnothaveany child,thenwesimplysetthenodeto NULL.Lastbutnottheleast,if thenodeto

bedeleted has eitheraleft oraright child but notboth, thenthecurrent nodeis replaced by its child node and

the initial child node is deleted from the tree.

Searchfora Nodein aBinarySearchTree:

The search function is used to find whether a given value is present in the tree or not. The searching

process begins at the root node. The function first checks if the binary search tree is empty. If it is empty,

then the value we are searching for is not present in the tree. So, the search algorithm terminates by

displayinganappropriatemessage.However,iftherearenodesinthetree,thenthesearchfunction

checks to see if the key value of the current node is equal to the value to be searched. If not, it checks if

the value to be searched for is less than the value of the current node, in which case it should be

recursively called on the left child node. In case the value is greater than the value of the current node, it

should be recursively called on the right child node.

Thesearchoperation isperformedasfollows:

Step1:Readthesearchelementfromtheuser

Step2:Compare, thesearchelementwiththevalueofrootnodeinthetree.

Step 3:Ifbotharematching,thendisplay"Givennodefound!!!"andterminatethe function

Step4: If both are notmatching, then checkwhether search elementis smalleror larger than thatnode value.

Step 5: If search element is smaller, then continue the search process in left subtree.

Step 6: If search element is larger, then continue the search process in right subtree.

Step7:Repeatthesameuntilwefoundexact elementorwecompletedwithaleafnode

Step8:Ifwereachtothenodewithsearchvalue,thendisplay"Elementisfound"andterminatethe function.

Step9:Ifwereachtoaleafnodeanditisalsonotmatching,thendisplay"Elementnotfound"and terminate the

function.

Thebelowfigureshows howabinarytreeissearchedtofindaspecificelement.First,seehowthetree will be

traversed to find the node with value 12.

Theproceduretofindthenodewithvalue67 is illustratedin belowfigure.

The procedure tofind thenode with value 40isshown inbelowfigure.Thesearch would terminate after

reaching node 39 as it does not have any right child.

AlgorithmtoSearchforanElementinBinarySearch Tree:

Thealgorithmtosearchforanelementinthebinarysearchtreeasshownbelow.InStep1,wecheckif the value

stored at the current node of TREE is equal to VAL or if the current node is NULL, then we return the

current node of TREE. Otherwise, if the value stored at the current node is less than VAL, then the

algorithm is recursively called on its right sub-tree, else the algorithm is called on its left sub-tree.

AVLTREES:

AVL tree is a self-balancing binary search tree invented by G.M. Adelson-Velsky and E.M. Landis in

1962. The tree is namedAVLin honor of its inventors. In an AVL tree, the heights of the two sub-treesof a

node may differ by at most one. Due to this property, the AVL tree is also known as a height- balanced

tree. The key advantage of using an AVL tree is that it takes O(log n) time to perform search, insert, and

delete operations in an average case as well as the worst case because the height of the tree is limited to

O(log n).

The structure of an AVL tree is the same as that of a binary search tree but with a little difference.In its

structure, it stores an additional variable called the Balance Factor. Thus, every node has a balance factor

associated with it. The balance factor of a node is calculated by subtracting the height of its right sub-tree

from the height of its left sub-tree. A binary search tree in which every node has a balance factor of –1, 0,

or 1 is said to be height balanced. A node with any other balance factor is considered to be unbalanced

and requires rebalancing of the tree.

Balancefactor=Height(leftsub-tree)–Height(rightsub-tree).

 If balance factor ofany node is 1, itmeans that the left sub-tree is one level higher than the right

sub-tree.

 If balance factor of any node is 0,itmeans that the left sub-tree and rightsub-tree contain equal

height.

 If balance factor ofany node is -1, it means that the left sub-tree is one level lower than the right

sub-tree.

Look at the below figure. Note that the nodes 18, 39, 54, and 72 have no children, so their balance

factor = 0. Node 27 has one left child and zero right child. So, the height of left sub-tree = 1, whereas the

height ofright sub-tree=0.Thus, itsbalance factor =1. Lookat node36, it hasa left sub-treewithheight

= 2, whereas the heightof rightsub-tree = 1. Thus, its balancefactor = 2 – 1 = 1. Similarly, the balance

factorofnode 45 = 3 – 2 =1; and node 63 has a balance factorof 0 (1 – 1).

The trees given in above figure are typical candidates of AVL trees because the balancing factor of

every node is either 1, 0, or –1. However, insertions and deletions from an AVL tree may disturb the

balance factor of the nodes and, thus, rebalancing of the tree may have to be done. The tree is rebalanced

by performing rotation at the critical node.

There are four types of rotations: LL rotation, RR rotation, LR rotation, and RL rotation. The type of

rotation that has to be done will vary depending on the particular situation.

OperationsonAVLtree:

Due to the fact that, AVL tree is also a binary search tree therefore, all the operations are

performed in the same way as they are performed in a binary search tree. Searching and traversing

do not lead to the violation in property of AVL tree. However, insertion and deletion are the

operations which can violate this property and therefore, they need to be revisited.

1. Insertion 2.Deletion

InsertingaNewNodeinanAVLTree:

Insertion in an AVL tree is also done in the same way as it is done in a binary search tree. In the

AVL tree, the new node is always inserted as the leaf node. But the step of insertion is usually

followed by an additional step of rotation. Rotation is done to restore the balance of the tree.

However, if insertion of the new node does not disturb the balance factor, that is, if the balance

factor of every node is still –1, 0, or 1, then rotations are not required. During insertion, the new

nodeisinsertedastheleafnode,soitwillalwayshaveabalancefactorequaltozero.Theonly

nodes whose balance factors willchange are those which lie in the pathbetweenthe rootofthe tree and

the newly inserted node.

Thepossiblechangeswhich maytakeplaceinanynodeonthepathareas follows:

 Initially,thenodewaseitherleft-orright-heavyandafterinsertion,itbecomesbalanced.

 Initially,thenodewasbalancedandafterinsertion,itbecomeseitherleft-orright-heavy.

 Initially, the node was heavy (either left or right) and the new node has been inserted in the

heavy sub-tree, thereby creating an unbalanced sub-tree. Such a node is said to be a critical

node.

Consider the AVL tree given in below figure. If we insert a new node with the value 30, then the

new tree will still be balanced and no rotations will be required in this case. Look at the tree

which shows the tree after inserting node 30.

Let us take another example to see how insertion can disturb the balance factors of the

nodes and how rotations are done to restore the AVL property of a tree. After inserting a new

node with the value 71, the new tree will be as shown in the above figure. Note that there are

threenodesinthetreethathavetheirbalancefactors2,–2,and–2,therebydisturbingthe

AVLness of the tree. So, here comes the need to perform rotation. To perform rotation, our first

task is to find the critical node. Critical node is the nearest ancestor node on the path from the

inserted node to the root whose balance factor is neither –1, 0, nor 1. In the tree given above, the

critical node is 72. The second task in rebalancing the tree is to determine which type of rotation

has to be done. There are four types of rebalancing rotations and application of these rotations

depends on the position of the inserted node with reference to the critical node.

The fourcategoriesofrotationsare:

 LLrotation:Thenewnodeisinsertedintheleftsub-treeoftheleftsub-treeofthe critical node.

 RRrotation:Thenewnodeisinsertedin therightsub-tree of therightsub-tree of the critical

node.

 LRrotation:Thenewnodeisinsertedintherightsub-treeoftheleftsub-treeofthe critical node.

 RLrotation:Thenewnodeisinsertedintheleftsub-treeoftherightsub-treeofthe critical node.

LL Rotation:

When BST becomes unbalanced, due to a node is inserted into the left subtree of the left

subtree of C, then we perform LL rotation, LL rotation is clockwise rotation, which is applied on

the edge below a node having balance factor 2.

In above example, node C has balance factor 2 because a node A is inserted in the left

subtree of C left subtree. We perform the LL rotation on the edge below A.

Example: ConsidertheAVLTreeandinsert 18 intoit.

https://www.javatpoint.com/ll-rotation-in-avl-tree

RR Rotation

When BST becomes unbalanced, due to a node is inserted into the right subtree of the

right subtree of A, then we perform RR rotation, RR rotation is an anticlockwise rotation, which

is applied on the edge below a node having balance factor -2.

In above example, node A has balance factor -2 because a node C is inserted in the right

subtree of A right subtree. We perform the RR rotation on the edge below A.

Example: ConsidertheAVLTreeandinsert 89 intoit.

LRRotation

Double rotations are bit tougher than single rotation which has already explained above.

LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed on subtree and then

LLrotationisperformedonfulltree,byfulltreewemeanthefirstnodefromthepathofinserted node

whose balance factor is other than -1, 0, or 1.

Letusunderstandeachandeverystepveryclearly:

State Action

A node B has been inserted into the right subtree of A the left subtree

of C, because of which C has become an unbalanced node having

balance factor 2. This case is L R rotation where: Inserted node isin the

right subtree of left subtree of C

https://www.javatpoint.com/rr-rotation-in-avl-tree

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on

subtree rooted at A is performed first.By doing RR rotation, node A,

has become the left subtree of B.

After performing RR rotation, node C is still unbalanced, i.e., having

balance factor 2, as inserted node A is in the left of left of C.

Now we perform LL clockwise rotation on full tree, i.e. on node C.

node C has now become the right subtree of node B, A is leftsubtree of

B.

Balancefactorofeachnodeisnoweither-1,0,or1,i.e.BSTis balanced now.

Example:

Shownbelow isthecase ofLR rotation, heretworotationsare performed. First RR andthen, LL as

follows,

 Rightrotationisappliedat70,afterrestructuring,60takestheplaceof70and70asthe right child of

60.

 Now left rotation is required at the root 50, 60 becomes the root. 50 and 70 become the left

and right child respectively.

LRRotation

Wecouldalso thinkofthe shownwaytobalance quicklyrather thangoingwithtwo rotations.

RL Rotation

As already discussed, that double rotations are bit tougher than single rotation which has

already explained above. R L rotation = LL rotation + RR rotation, i.e., first LL rotation is

performed on subtree and then RR rotation is performed on full tree, by full tree wemean the first

node from the path of inserted node whose balance factor is other than -1, 0,or 1.

State Action

A node B has been inserted into the left subtree of C the right subtree

of A, because of which A has become an unbalanced node having

balance factor - 2. This case is RL rotation where: Inserted node is in

the left subtree of right subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL (clockwise) on

subtree rooted at C is performed first. By doint RR rotation, nodeC has

become the right subtree of B.

After performing LL rotation, node A is still unbalanced, i.e. having

balance factor -2, which is because of the right-subtree of the right-

subtree node A.

Now we perform RR rotation(anticlockwise rotation) on full tree, i.e.

on node A. node C has now become the right subtree of node B, and

node A has become the left subtree of B.

https://www.javatpoint.com/rl-rotation-in-avl-tree

Balancefactorofeachnodeisnoweither-1,0,or 1,i.e.,BSTis balanced now.

Example:

Shownbelow isthe case ofRLrotation, heretworotationsare performed. First LLand then, RR as

follows,

 Leftrotationisappliedat30,afterrestructuring40takestheplaceof30and30asthe left child of 40.

 Now rightrotation is required at the root 50, 40 becomes root.30 and 50becomes the left and

right child respectively.

RLRotation

Wecouldalso thinkofthe shownwaytobalance quicklyrather thangoingwithtwo rotations.

Example:

Construct AVLTreeforthefollowingsequenceofnumbers:

50,20, 60,10, 8,15,32, 46,11,48

Solution:

Step-01:Insert50

Step-02:Insert20

As20 <50,so insert20in50’sleftsubtree.

Step-03:Insert60

As60>50,so insert60in50’srightsubtree.

Step-04:Insert10

As10<50,soinsert 10in50’sleft subtree.

As10<20,soinsert10in20’sleftsubtree.

Step-05:Insert8

As8<50,soinsert 8in50’sleft subtree.

As8<20,soinsert 8in20’sleft subtree.

As8<10,soinsert8in10’sleftsubtree.

Tobalancethetree,

Findthefirst imbalanced nodeonthepathfromthenewlyinsertednode(node8)totheroot node.

Thefirst imbalancednode isnode20.

Now,countthreenodesfromnode20inthedirectionofleafnode.

Then, use AVL tree rotation to balance the tree.

Followingthis,wehave-

Step-06:Insert15

As 15 < 50, so insert 15 in 50’s left sub tree.

As15>10,soinsert 15in10’sright subtree.

As 15 < 20, so insert 15 in 20’s left sub tree.

Tobalancethetree,

Findthefirst imbalanced nodeonthepathfromthenewlyinsertednode(node15)totheroot node.

Thefirst imbalancednode isnode50.

Now,countthreenodesfromnode50inthedirectionofleafnode.

Then, use AVL tree rotation to balance the tree.

Followingthis,wehave-

Step-07:Insert32

As32>20,soinsert 32in20’sright subtree.

As 32 < 50, so insert 32 in 50’s left sub tree.

Step-08:Insert46

As46>20,soinsert 46in20’sright subtree.

As 46 < 50, so insert 46 in 50’s left sub tree.

As46>32,soinsert 46in32’sright subtree.

Step-09:Insert11

As 11 < 20, so insert 11 in 20’s left sub tree.

As11>10,soinsert 11in10’sright subtree.

As 11 < 15, so insert 11 in 15’s left sub tree.

Step-10:Insert48

As48>20,soinsert 48in20’sright subtree.

As 48 < 50, so insert 48 in 50’s left sub tree.

As48>32,soinsert 48in32’sright subtree. As48

>46,so insert48in46’srightsubtree.

Tobalancethetree,

Findthefirst imbalanced nodeonthepathfromthenewlyinsertednode(node48)totheroot node.

Thefirst imbalancednode isnode32.

Now,countthreenodesfromnode32inthedirectionofleafnode.

Then, use AVL tree rotation to balance the tree.

Followingthis,wehave-

DeletingaNodefromanAVL Tree:

Deletion of a node in an AVL tree is similar to that of binary search trees. But it goes one

step ahead. Deletion may disturb the AVLness of the tree, so to rebalance the AVL tree, we need

to perform rotations. There are two classes of rotations that can be performed on an AVL tree

after deleting a given node. These rotations are R rotation and L rotation. On deletion of node X

from the AVL tree, if node A becomes the critical node (closestancestor node on the path from X

to the root node that does not have its balance factor as 1, 0, or –1), then the type of rotation

depends on whether X is in the left sub-tree of A or in its right sub-tree.

If the node to be deleted is present in the left sub-tree of A, then L rotation is applied, else if X is

in the right sub-tree, R rotation is performed. Further, there are three categories of L and R

rotations. The variations of L rotation are L–1, L0, and L1 rotation. Correspondingly for R

rotation, there are R0, R–1, and R1 rotations. In this section, we will discuss only R rotation. L

rotations are the mirror images of R rotations.

R0rotation(NodeBhasbalancefactor0):

Example:

Deletethenode30fromtheAVLtreeshowninthefollowingimage.

Solution:

Inthis case,thenodeBhasbalancefactor0,thereforethetreewillberotatedbyusingR0 rotation

as shown in the following image. The node B(10) becomes the root, while the node A is moved

to its right. The right child of node B will now become the left child of node A.

R1Rotation(NodeBhasbalancefactor1):

Example:

DeleteNode55fromtheAVLtreeshowninthefollowingimage.

Solution:

Deleting 55 from the AVL Tree disturbs the balance factor of the node 50 i.e. node A which

becomes the critical node. This is the condition of R1 rotation in which, the node A will be

moved to its right (shown in the image below). The right of B is now become the left of A (i.e.

45).

Theprocess involvedinthesolutionisshowninthefollowing image.

R-1Rotation(NodeBhasbalancefactor-1):

Example:

Deletethenode60fromtheAVLtreeshowninthefollowingimage.

Solution:

In this case, nodeB has balance factor -1. Deleting thenode60, disturbsthebalancefactorofthe

node50 therefore, it needs to beR-1 rotated.ThenodeC i.e.45 becomestherootofthetreewith the

node B(40) and A(50) as its left and right child.

BTREES:

A B tree is a specialized M-way tree developed by Rudolf Bayer and Ed McCreight in

1970 that is widely used for disk access. A B tree of order m can have a maximum of m–1 keys

andm pointers to its sub-trees. A B tree may contain a large number of key values and pointersto

sub-trees. Storing a large number of keys in a single node keeps the heightof the tree relatively

small.

Most of the tree operations (search, insert, delete, max, min, ..etc) require O(h) disk

accesses where h is the height of the tree. B-tree is a fat tree. The height of B-Trees is keptlow

byputting the maximumpossible keysina B-Treenode.Generally,the B-Treenode sizeis kept equal

to the disk block size. Since the height of the B-tree is low so total disk accesses for most of the

operations are reduced significantly compared to balanced Binary Search Trees like AVL Tree,

Red-Black Tree, etc.

PropertiesofBTrees:

1. EverynodeintheBtreehasatmost(maximum)mchildren.

2. Every node in the B tree except the root node and leaf nodes has at least (minimum) m/2

children. This condition helps to keep the tree bushy so that the path from the rootnode to the leaf

is very short, even in a tree that stores a lot of data.

3. Therootnodehasatleasttwochildrenifitis notaterminal(leaf)node.

4. Allleafnodesareatthesamelevel.

Forexample:

B-TreeofOrder4contains a maximumof3 keyvalues ina nodeand maximumof4 childrenfor a

node.

WhileperforminginsertionanddeletionoperationsinaBtree,the number ofchildnodes may

change. So, in order to maintain a minimum number of children, the internal nodes may be

joined or split.

Wewilldiscusssearch,insertion,and deletionoperations:

Searching:

SearchinginBTreesissimilartothatinBinarysearchtree.Forexample,ifwesearchforan item 49 in the

following B Tree. The process will something like following :

1. Compareitem49 withrootnode78. since49 <78hence, movetoitsleftsub-tree.

2. Since,40<49<56,traverserightsub-treeof40.

3. 49>45,movetoright.Compare49.

4. matchfound,return.

Searching inaBtreedependsupontheheight ofthetree.ThesearchalgorithmtakesO(logn) time to

search any element in a B tree.

Inserting

Insertions are done atthe leaf node level. The following algorithm needs to be followed inorder

to insert an item into B Tree.

1. Traverse the B Treein order tofind the appropriate leafnode at which thenode can

beinserted.

2. Iftheleafnodecontainlessthanm-1 keystheninserttheelementintheincreasingorder.

3. Else,iftheleafnodecontains m-1keys, thenfollowthefollowingsteps.

o Insertthenewelementintheincreasingorderofelements.

o Splitthenodeintothetwonodesatthemedian.

o Pushthemedianelementuptoitsparentnode.

o Ifthe parent node also contain m-1 number ofkeys, then split it too by following

the same steps.

Example:

Insertthenode8 intotheBTreeoforder5showninthefollowingimage.

8willbeinsertedtotherightof5,thereforeinsert 8.

Thenode,nowcontain5keyswhichisgreaterthan(5 -1=4)keys.Thereforesplit thenode fromthe

median i.e. 8 and push it up to its parent node shown as follows.

Deletion:

Deletion is also performed at the leaf nodes. The node which is to be deleted can either be a leaf

node or an internal node. Following algorithm needs to be followedin order to delete a node from

a B tree.

1. Locatetheleafnode.

2. Ifthere aremorethanm/2 keysintheleafnodethendeletethedesiredkeyfromthenode.

3. If theleaf nodedoesn'tcontainm/2keys then complete thekeysby takingthe element from

eight or left sibling.

o Iftheleft siblingcontainsmorethanm/2elementsthenpushitslargest elementup to its

parent and move the intervening element down to the node where the key is

deleted.

o Iftherightsiblingcontainsmorethanm/2elementsthenpushitssmallestelement up to

the parent and move intervening element down to the node where the key is

deleted.

4. If neither of the sibling contain more than m/2 elements then create a new leaf node by

joining two leaf nodes and the intervening element of the parent node.

5. Ifparentisleftwith lessthanm/2nodesthen, applytheaboveprocessontheparent too.

If the the node which is to be deleted is an internal node, then replace the node with its in-order

successor or predecessor. Since, successor or predecessor will always be on the leaf node hence,

the process will be similar as the node is being deleted from the leaf node.

Example1

Deletethenode53fromtheBTreeoforder5showninthefollowingfigure.

53ispresentintherightchildofelement49.Deleteit.

Now, 57 is the only element which is leftin the node, the minimum number of elements that must

be present in a B tree of order 5, is 2. it is less than that, the elements in its left and right sub-tree

arealso not sufficient therefore, mergeit with theleft sibling and intervening element of parent i.e.

49.

ThefinalBtreeisshownas follows.

Example

ConstructaB-TreeofOrder3byinserting numbersfrom1to 10.

B+TREES

A B+ tree is a variant of a B tree which stores sorted data in a way thatallows for

efficientinsertion,retrieval,andremovalofrecords,eachofwhichisidentifiedbyakey.Whilea B tree

can store both keys and records in its interior nodes, a B+ tree, in contrast, stores all the records

at the leaf level of the tree; onlykeys are stored in the interior nodes.

The leaf nodes of a B+ tree are often linked to one another in a linked list. This has an

added advantage of making the queries simpler and more efficient.

Typically, B+ trees are used to store large amounts of data that cannot be stored in the

main memory. With B+ trees, the secondary storage (magnetic disk) is used to store the leaf

nodes of trees and the internal nodes of trees are stored in the main memory.

B+ trees store data only in the leaf nodes. All other nodes (internal nodes)are called index

nodes or i-nodes and store index values. This allows us to traverse the tree from the root down to

the leaf node that stores the desired data item.

The internal nodes of B+ tree are often called index nodes. A B+ tree oforder 3 is shown in the

following figure.

Many database systems are implemented using B+ tree structure because of its simplicity. Since

all the data appear in the leaf nodes and are ordered, the tree is always balanced and makes

searching for data efficient.

AdvantagesofB+Tree

1. Recordscanbefetchedinequalnumber ofdiskaccesses.

2. HeightofthetreeremainsbalancedandlessascomparetoBtree.

3. Wecanaccessthedatastored inaB+treesequentiallyaswellasdirectly.

4. Keysareused forindexing.

5. Fastersearchqueries asthedataisstoredonlyontheleafnodes.

ComparisonBetweenBTreesandB+Trees

InsertioninB+Tree:

Step1:Insertthenewnodeasaleaf node

Step 2: If the leaf doesn't have required space, split the node and copy the middle node to the

next index node.

Step 3: Iftheindexnodedoesn'thaverequiredspace,splitthenodeandcopythemiddleelement to the

next index page.

Example:

Insertthevalue195intotheB+treeoforder5showninthefollowingfigure.

195will be insertedintherightsub-treeof120after 190.Insertitatthedesired position.

Thenodecontainsgreaterthanthemaximumnumberofelementsi.e.4,thereforesplititand place the

median node up to the parent.

Now,theindexnodecontains6childrenand5keyswhichviolatestheB+treeproperties, therefore we

need to split it, shown as follows.

DeletioninB+Tree:

Step1:Deletethekeyanddatafromtheleaves.

Step 2: if the leaf node contains less than minimum number of elements, merge down the node

with its sibling and delete the key in between them.

Step 3:if the index node contains less than minimum number of elements, merge the node with

the sibling and move down the key in between them.

Example

Deletethekey200 fromtheB+Treeshowninthefollowingfigure.

200ispresentintherightsub-treeof190,after195.deleteit.

Mergethetwo nodes byusing 195,190,154 and129.

Now,element120isthesingleelementpresentinthenodewhichisviolatingtheB+Tree properties.

Therefore, we need to merge it byusing 60, 78, 108 and 120.

Now,the height ofB+treewillbedecreasedby1.

RED–BLACK TREE

Red-Black Trees are another type of the Balanced Binary Search Trees with two colourednodes: Red and Black. It is a self-balancing binary search tree thatmakes

use of these colours to maintain the balance factor during the insertion and deletion operations. Hence, during the Red-Black Tree operations, the memoryuses 1

bit of storage to accommodate the colour information of each node

InRed-Blacktrees,alsoknownasRBtrees,therearedifferentconditionstofollowwhileassigningthecolourstothenodes.

 Therootnodeisalwaysblackin colour.

 Notwoadjacentnodesmustberedincolour.

 Everypathinthetree(fromtherootnodetotheleafnode)musthavethesameamountofblackcolourednodes.

Even though AVL trees are more balanced than RB trees, with the balancing algorithm in AVL trees being stricter than that of RB trees, multiple and

fasterinsertion and deletion operations are made more efficient through RB trees.

BasicOperationsofRed-BlackTrees

Fig:RBtrees

TheoperationsonRed-BlackTreesincludeallthebasicoperationsusuallyperformedonaBinarySearchTree.SomeofthebasicoperationsofanRBTreeinclude −

 Insertion

 Deletion

 Search

InsertionoperationofaRed-Blacktreefollowsthesameinsertionalgorithmofabinarysearchtree.Theelementsareinsertedfollowingthebinarysearchproperty and as an

addition, the nodes are color coded as red and black to balance the tree according to the red-black tree properties.

Followtheproceduregivenbelowtoinsertanelementintoared-blacktreebymaintainingbothbinarysearchtreeandredblacktreeproperties.

Case1−Checkwhetherthetreeisempty;makethecurrentnodeastherootandcolorthenodeblackifitisempty.

Case2−Butifthetreeisnotempty,wecreateanewnodeandcoloritred.Herewefacetwodifferentcases−

 Iftheparentofthenewnodeisablackcolorednode,weexittheoperationandtreeisleftasitis.

 Iftheparentofthisnewnodeisredandthecoloroftheparent’ssiblingiseitherblackorifitdoesnotexist,weapplyasuitablerotationandrecoloraccordingly.

 If the parent of thisnew node is red and color of the parent’s sibling is red, recolor the parent, thesibling and grandparent nodes to black. The grandparentis
recolored only if it is not the root node; if it is the root node recolor only the parent and the sibling.

InsertionExample

LetusconstructanRBTreeforthefirst7integernumberstounderstandtheinsertionoperationindetail−The tree is

checked to be empty so the first node added is a root and is colored black.

Now,thetreeisnotemptysowecreateanewnodeandaddthenextintegerwithcolorred,

ThenodesdonotviolatethebinarysearchtreeandRBtreeproperties,hencewemoveaheadtoaddanothernode.

Thetreeisnotempty;wecreateanewrednodewiththenextintegertoit.Buttheparentofthenewnodeisnotablackcolorednode,

ThetreerightnowviolatesboththebinarysearchtreeandRBtreeproperties;sinceparent’ssiblingisNULL,weapplyasuitablerotationandrecolorthenodes.

NowthattheRBTreepropertyisrestored,weaddanothernodetothetree−

The tree once again violates the RB Tree balance property, so we check for the parent’s sibling node color, red in this case,so we just recolor the parent and

thesibling.

Wenextinserttheelement5,whichmakesthetreeviolatetheRBTreebalancepropertyonceagain.

AndsincethesiblingisNULL,weapplysuitablerotationandrecolor.

Now,weinsertelement6,buttheRBTreepropertyisviolatedandoneoftheinsertioncasesneedtobeapplied−

Theparent’ssiblingisred,sowerecolortheparent,parent’ssiblingandthegrandparentnodessincethegrandparentisnottherootnode.

Now,weaddthelastelement,7,buttheparentnodeofthisnewnodeis red.

Sincetheparent’ssiblingisNULL,weapplysuitablerotations(RRrotation)

ThefinalRBTreeisachieved.

DeletioninRedBack tree

Let's understandhowwecan delete the particular node fromthe Red-Black tree. The following are therulesusedto delete the particularnode from the

tree:

Step1:First,we performBSTrulesfor the deletion.

Step2:

Case1:ifthenodeisRed,whichistobedeleted,wesimplydeleteit. Let's

understand case 1 through an example.

Supposewewanttodeletenode30fromthetree,whichisgivenbelow.

Initially, we are having the address of the root node. First, we will apply BST to search the node. Since 30 is greater than 10 and 20, which means

that 30 is the right child of node 20. Node 30 is a leaf node and Red in color, so it is simply deleted from the tree.

If we want to delete the internal node that has one child. First,replace the value of the internal node with the value of the child node and thensimply

delete the child node.

Let'stakeanotherexampleinwhichwewanttodeletetheinternalnode,i.e.,node20.

We cannot delete the internal node; we can onlyreplace the value of that node with another value. Node 20 is at the right of the root node, andit is

having only one child, node 30. So, node 20 is replaced with a value 30, but the color of the node would remain the same, i.e., Black. In the end,

node 20 (leaf node) is deleted from the tree.

If we want to delete the internal node that has two child nodes. In this case, we have to decide from which we have to replace the value of the

internal node (either left subtree or right subtree). We have two ways:

o Inorderpredecessor:Wewillreplacewiththe largestvaluethatexists intheleftsubtree.

o Inordersuccessor:Wewill replacewith the smallestvalue thatexists in the rightsubtree.

Supposewewanttodeletenode30fromthetree,whichisshownbelow:

Node30isattherightoftherootnode.Inthiscase,wewillusetheinordersuccessor.Thevalue38isthesmallestvalueintherightsubtree,sowe

willreplacethevalue30with38,butthenodewouldremainthesame,i.e.,Red.Afterreplacement,theleafnode,i.e.,30, wouldbedeletedfromthe tree. Since

node 30 is a leaf node and Red in color, we need to delete it (we do not have to perform any rotations or any recoloring).

Case2:Iftherootnodeisalsodoubleblack,thensimplyremovethedoubleblackandmakeitasingleblack.

Case3:Ifthe double black'ssiblingisblackandboth itschildren areblack.

o Removethedoubleblacknode.

o Add thecolorofthenodetotheparent(P)node.

1. IfthecolorofPisredthenitbecomesblack.

2. IfthecolorofPisblack,thenitbecomesdoubleblack.

o Thecolorofdoubleblack'ssiblingchangestored.

o Ifstilldoubleblacksituationarises,thenwewillapplyothercases.

Let'sunderstandthiscasethroughanexample.

Supposewewanttodeletenode15inthebelowtree.

We cannot simply delete node 15 from the tree as node 15 is Black in color. Node 15 has two children, which are nil. So, we r eplace the 15 value

with a nil value. As node 15 and nil node are black in color, the node becomes double black after replacement, as shown in the below figure.

Intheabovetree,wecanobservethatthedoubleblack'ssiblingisblackincoloranditschildrenarenil,whicharealso black.Asthedouble black's

sibling and its children have black so it cannot give its black color to neither of these. Now, thedouble black's parent node is Red so double black's

node add its black color to its parent node. The color of the node 20 changes to black while the color of the nil node changes to a single black as

shown in the below figure.

Afteraddingthecolortoitsparent node, thecolorofthedoubleblack'ssibling, i.e., node30changestoredas shownin thebelowfigure. In the above

tree, we can observe that there isno longer double black'sproblem exists, andit isalso a Red-Blacktree.

Case4:Ifdoubleblack's siblingisRed.

o Swapthecolorofitsparentanditssibling.

o Rotatetheparentnodeinthedoubleblack'sdirection.

o Reapplycases.

Let'sunderstandthiscasethroughanexample.

Supposewewanttodeletenode 15.

Initially, the 15 is replaced with a nil value. After replacement, the node becomes double black. Since double black's sibling is Red so color of the

node 20 changes to Red and the color of the node 30 changes to Black.

Once the swapping of the color is completed, the rotation towards the double black would be performed. The node 30 will move upwards and the

node 20 will move downwards as shown in the below figure.

In the above tree, we can observe that double black situation still exists in the tree. It satisfies the case 3 in which double black's sibling is black as

well as both its children are black. First, we removethe double black from the node and add the black color to its parent node. At the end, the color

of the double black's sibling, i.e., node 25 changes to Red as shown in the below figure.

Intheabovetree,wecanobservethatthedoubleblacksituationhasbeenresolved.ItalsosatisfiesthepropertiesoftheRedBlacktree.

Search

The searchoperationinred-blacktreefollows the same algorithm as that ofa binarysearchtree. The tree is traversedandeachnode is comparedwiththe keyelement to

be searched; if found it returns a successful search. Otherwise, it returns an unsuccessful search.

SplayTree

Splaytrees arethealteredversions oftheBinarySearchTrees,sinceitcontains alltheoperations of BSTs,likeinsertion,deletionandsearching,followedbyanother extended

operation called splaying.

Forinstance,avalue“A”issupposedtobeinsertedintothetree.Ifthetreeisempty,add“A”totherootofthetreeandexit;butifthetreeisnotempty,usebinary search insertion

operation to insert the element and then perform splaying on the new node.

Similarly,aftersearchinganelementinthesplaytree,thenodeconsistingoftheelementmustbesplayedaswell.

Buthowdoweperformsplaying? Splaying,insimplerterms,isjustaprocesstobringanoperationalnodetotheroot.Therearesixtypesofrotationsforit.

 Zigrotation

 Zagrotation

 Zig-Zigrotation

 Zag-Zagrotation

 Zig-Zagrotation

 Zag-Zigrotation

Zig rotation

Thezigrotationsareperformedwhentheoperationalnodeiseithertherootnodeortheleftchildnodeoftherootnode.Thenodeisrotatedtowardsit sright.

Aftertheshift,thetreewilllooklike−

Zagrotation

Thezagrotationsarealsoperformedwhentheoperationalnodeiseithertherootnodeortherightchildnodoftherootnode.Thenodeisrotatedtowardsitsleft.

Theoperationalnodebecomestherootnodeaftertheshift−

Zig-Zigrotation

Thezig-zigrotationsareperformedwhentheoperationalnodehasbothparentandagrandparent.Thenodeisrotatedtwoplacestowardsitsright.

Thefirstrotationwillshiftthetreetoonepositionright−

Thesecondrightrotationwillonceagainshiftthenodeforoneposition.Thefinaltreeaftertheshiftwilllooklikethis−

Zag-Zagrotation

Thezag-zagrotationsarealsoperformedwhentheoperationalnodehasbothparentandagrandparent.Thenodeisrotatedtwoplacestowardsitsleft.

Afterthefirstrotation,thetreewilllooklike−

Thenthefinaltreeafterthesecondrotationisgivenasfollows.However,theoperationalnodeisstillnottherootsothe splayingisconsideredincomplete.Hence,other suitable

rotations are again applied in this case until the node becomes the root.

Zig-Zagrotation

The zig-zag rotations are performed when the operational node has both a parent and a grandparent. But the difference is the grandparent, parent and child are

inLRL format. The node is rotated first towards its right followed by left.

Afterthefirstrotation,thetreeis−

Thefinaltreeafterthesecondrotation−

Zag-Zigrotation

The zag-zig rotations are also performed when the operational node has both parent and grandparent. But the difference isthe grandparent, parent and child are

inRLR format. The node is rotated first towards its left followed by right.

Firstrotationisperformed,thetreeisobtainedas−

After second rotation, the final tree is given as below. However, the operational node is not the root node yet so one more rotation needs to be performed to

makethe said node as the root.

BasicOperationsofSplayTrees

A splay contains the same basic operations that a Binary Search Tree provides with: Insertion, Deletion, and Search. However, after every operation there is

anadditional operation that differs them from Binary Search tree operations: Splaying. We have learned about Splaying already so let us understand the

proceduresof the other operations.

Insertion

The insertion operationin a Splay tree isperformed in the exact same way insertion in abinary search tree isperformed. The procedure to performthe insertion ina

splay tree is given as follows −

 Checkwhetherthetreeisempty;ifyes,addthenewnodeandexit

 Ifthetreeisnotempty,addthenewnodetotheexistingtreeusingthebinarysearchinsertion.

 Then,suitablesplayingischosenandappliedonthenewlyadded node.

Zag(Left)Rotationisappliedonthenew node

Deletion

Thedeletionoperationinasplaytreeisperformedasfollowing−

 Applysplayingoperationonthenodetobedeleted.

 Once,thenodeismadetheroot,deletethenode.

 Now,thetreeissplitintotwotrees,theleftsubtreeandtherightsubtree;withtheirrespectivefirstnodesastherootnodes:sayroot_leftand root_right.

 Ifroot_leftisaNULLvalue,thentheroot_right willbecometherootofthetree.Andviceversa.

 But if both root_left and root_right are not NULL values, then select the maximum value from the left subtree and make it thenew root by connecting
thesubtrees.

Search

ThesearchoperationinaSplaytree followsthesameprocedureof theBinarySearchTreeoperation.However,afterthesearchingisdoneandtheelementisfound, splaying is

applied on the node searched. If the element is not found, then unsuccessful search is prompted.

MODULE-4

GRAPHS

INTRODUCTION

A graph is an abstract data structure that is used to implement the mathematical concept of

graphs. It is basically a collection of vertices (also called nodes) and edges that connect these

vertices. A graph is often viewed as a generalization of the tree structure, where instead of having a

purely parent-to-child relationship between tree nodes, any kind of complex relationship can exist.

DEFINITION:

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G)

represents the edges that connect these vertices.

UndirectedGraph

The above Figure shows a Graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A,

D), (B, D), (D, E), (C, E)}. Notethat there are five vertices or nodes and six edges in the graph.

A graph can be Directed or Undirected. In an Undirected graph, edges do not have any direction

associated with them. That is, if an edge is drawn between nodes A and B, then the nodes can be

traversed from A to B aswell as from B to A.The above Figure shows an undirected graph because

it does not give any information about the direction of the edges.

Look at the Below Figure which shows a Directed graph. In a directed graph, edges form an

ordered pair. If there is an edge from A to B, then there is a path from A to B but not from B to A.

The edge (A, B) is said to initiate from node A (also known as initial node) and terminate at node B

(terminal node).

GRAPHTERMINOLOGY:

Weusethefollowingtermsingraphdatastructure.

1. Vertex: An individual data element of a graph is called as Vertex. Vertex is also known as node.

In above example graph, A, B, C, D & E are known as vertices.

2. Edge: An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (starting Vertex , ending Vertex). For example, the link between vertices A and B is

represented as (A,B). In above graph, there are 7 edges (A,B), (A,C), (A,D), (B,D), (B,E), (C,D),

(D,E).

Edgesarethreetypes:

A. UndirectedEdge:Anundirectededgeisabidirectionaledge.Ifthereisaundirectededge between

vertices A and B then edge (a , b) is equal to edge (b, a).

B. DirectedEdge:Adirectededgeisaunidirectionaledge.If thereisadirectededgebetween vertices A

and B then edge (A , B) is not equal to edge (B , A).

C. WeightedEdge:-Aweighted edgeis anedge with costonit.

3. Undirected Graph:Agraphwithonlyundirected edges issaidtobeundirected graph.

4. Directed Graph: A directed graph is a graph in which all the edges are uni-directional i.e. the

edges point in a single direction.

5. MixedGraph: Agraphwithundirectedanddirectededgesissaidtobemixed graph.

6. Weighted Graph: In a weighted graph, each edge is assigned a weight or cost. Consider a graph

of 4 nodes as in the diagram below. As you can see each edge has a weight/cost assigned toit. If you

want to go from vertex 1 to vertex 3, you can take one ofthe following 3 paths:

a. 1->2->3

b. 1->3

c. 1->4->3

Thereforethe totalcost ofeachpathwillbeasfollows:-Thetotalcostof1->2->3willbe(1+2)

i.e. 3units - Thetotalcost of1 ->3 will be 1 unit - Thetotalcostof1 -> 4-> 3will be (3 +2) i.e. 5 units

7. EndverticesorEndpoints:Thetwoverticesjoinedbyanedgearecalledtheendvertices(or

endpoints) of the edge.

8. Origin:Ifanedgeisdirected,itsfirstendpointissaid tobeoriginofit.

9. Destination:Ifanedgeisdirected,itsfirstendpointissaidtobeoriginofitandtheother endpoint is said

to be the destination of the edge.

10. Adjacent:IfthereisanedgebetweenverticesAandBthenbothAandBaresaidtobe adjacent.

11. Degree:Totalnumberofedges connectedtoavertexissaid tobedegreeofthatvertex.

12. Indegree: Total number of incoming edges connected to a vertex is said to be indegree of that

vertex.

13. Outdegree:Totalnumber ofoutgoing edgesconnectedto avertexissaid to beoutdegreeofthat

vertex.

14. Path: Apath is a sequence ofalternating vertices and edges that starts at a vertex and ends at a

vertex such that each edge is incident to its predecessor and successor vertex.

GraphTraversals:(SearchesinGraphs):

Graph traversal is technique used for searching a vertex in a graph. The graph

traversal is also used to decide the order of vertices to be visit in the search process. A graph

traversalfindstheegdestobeusedinthesearchprocesswithoutcreatingloopsthatmeansusing graph

traversal we visit all vertices of graph without getting into looping path.

Therearetwographtraversaltechniquesandtheyareas follows.

1. DFS(DepthFirstSearch)

2. BFS(BreadthFirst Search)

1. Depth-firstSearchAlgorithm:

The depth-first search algorithm progresses by expanding the starting node of G

and then going deeper and deeper until the goal node is found, or until a node that has no

children is encountered. When a dead-end is reached, the algorithm backtracks, returning to the

most recent node that has not been completely explored.

In other words, depth-first search begins at a starting node A which becomes the

current node. Then, it examines each node N along a path P which begins at A. That is, we

process a neighbour of A, then a neighbour of neighbour of A, and so on. During the execution

of the algorithm, if we reach a path that has a node N that has already been processed, then we

backtrack to the current node. Otherwise, the unvisited (unprocessed) node becomes the current

node.

WeusethefollowingstepstoimplementDFS traversal:

Step1:DefineaStackofsizetotalnumber ofverticesinthegraph.

Step2:Selectanyvertex as startingpointfor traversal.Visitthatvertex andpushiton to the Stack.

Step 3: Visitany oneof theadjacentvertex of thevertex whichis at top of thestack whichis not

visited and push it on to the stack.

Step4:Repeatstep3untiltherearenonewvertextobevisitfromthevertexontopofthe stack.

Step 5: Whenthere is no new vertexto be visit thenuse back tracking and pop one vertex from the

stack.

Step 6:Repeatsteps3,4and5untilstackbecomesEmpty.

Step7:Whenstack becomesEmpty,thenproducefinalspanningtreebyremovingunused edges from

the graph

Example:

ApplicationsofDepth-FirstSearchAlgorithm :

Depth-firstsearchisusefulfor:

1. Findingapathbetweentwospecifiednodes,u andv,ofanunweighted graph.

2. Findingapathbetweentwospecifiednodes,u andv,ofaweighted graph.

3. Findingwhetheragraphisconnectedornot.

4. Computingthespanningtreeofaconnectedgraph.

Breadth-FirstSearchAlgorithm:

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and

explores all the neighbouring nodes. Then for each of those nearest nodes,thealgorithm explores

their unexplored neighbour nodes, and so on, until it finds the goal.

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a

graph without any loops. We use Queue data structure with maximum size of total number of

vertices in the graph to implement BFS traversal of a graph.

WeusethefollowingstepstoimplementBFS traversal:

Step1:DefineaQueueofsizetotalnumberofverticesinthegraph.

Step2:Selectanyvertexasstartingpointfortraversal.Visitthatvertexandinsertitintothe Queue.

Step3: Visitall theadjacentvertices of thevertex whichis atfrontof theQueuewhichis not visited and

insert them into the Queue.

Step 4: When there is no new vertexto be visit fromthe vertexat front ofthe Queue then delete that

vertex from the Queue.

Step5:Repeatstep3and 4untilqueuebecomesempty.

Step6:WhenqueuebecomesEmpty,thenproducefinalspanningtreebyremovingunused edges from

the graph.

Sorting

QuickSort Algorithm

Sorting is a way of arranging items in a systematic manner. Quicksort is the widely used sorting

algorithm that makesn log n comparisons in average case for sorting an array of n elements. It is a

faster and highly efficient sorting algorithm. This algorithm follows the divide and conquer approach.

Divide and conquer is a technique of breaking down the algorithms into subproblems, then solvingthe

subproblems, and combining the results back together to solve the original problem.

Divide:In Divide, first pick a pivot element. After that, partition or rearrange the array into two sub-

arrays such that each element in the left sub-array is less than or equal to the pivot element and each

element in the right sub-array is larger than the pivot element.

Conquer:Recursively,sorttwosubarrayswithQuicksort.

Combine:Combinethealreadysorted array.

Quicksort picks an element as pivot, and then it partitions the given array around the picked pivot

element. In quick sort, a large array is divided into two arrays in which one holds values that are

smaller than the specified value (Pivot), and another array holds the values that are greater than the

pivot.

After that, left and right sub-arrays are also partitioned using the same approach. It will continue until

the single element remains in the sub-array.

Choosing the pivot

Picking a good pivot is necessary for the fast implementation of quicksort. However, it is typical to

determine a good pivot. Some of the ways of choosing a pivot are as follows -

o Pivotcanberandom, i.e.selecttherandom pivotfromthegiven array.

o Pivotcaneither bethe rightmost elementofthe leftmostelementof thegiven array.

o Selectmedianasthepivot element.

Algorithm

1. QUICKSORT(arrayA,start, end)

2. {

3. 1if(start<end)

4. 2 {

5. 3p=partition(A,start, end)

6. 4QUICKSORT(A,start,p-1)

7. 5QUICKSORT(A,p+ 1, end)

8. 6 }

9. }

WorkingofQuickSort Algorithm

Now,let's seethe working of theQuicksort Algorithm.

Tounderstandtheworkingofquicksort,let'stake anunsortedarray.Itwillmake theconceptmore clear and

understandable.

Lettheelementsofarrayare-

In the given array, we consider the leftmost element as pivot. So, in this case, a[left] = 24, a[right]

=27 and a[pivot] = 24.

Since,pivotisatleft, soalgorithmstartsfrom rightandmovetowards left.

Now,a[pivot]<a[right], soalgorithmmovesforwardonepositiontowards left,i.e.-

Now,a[left]=24,a[right] =19, anda[pivot] =24.

Because,a[pivot]>a[right], so,algorithmwill swapa[pivot]with a[right], andpivot movestoright, as

-

Now, a[left] = 19, a[right] = 24, and a[pivot] = 24. Since, pivot isat right, so algorithm starts from left

and moves to right.

Asa[pivot]> a[left],soalgorithm movesoneposition torightas-

Now,a[left]=9,a[right]=24,anda[pivot]=24.Asa[pivot]>a[left],soalgorithmmovesone position to right

as -

Now, a[left] = 29, a[right] = 24, and a[pivot] = 24. As a[pivot] < a[left], so, swap a[pivot] and a[left],

now pivot is at left, i.e. -

Since, pivot is at left, so algorithm starts from right, and move to left. Now, a[left] = 24, a[right] = 29,

and a[pivot] = 24. As a[pivot] < a[right], so algorithm moves one position to left, as -

Now,a[pivot]=24,a[left]=24,anda[right]=14.Asa[pivot]>a[right],so,swapa[pivot]and a[right], now

pivot is at right, i.e. -

Now,a[pivot]=24,a[left]=14,anda[right]=24.Pivotisatright, sothealgorithmstartsfromleft and move to

right.

Now,a[pivot]=24,a[left]=24,anda[right]=24.So,pivot,leftandrightarepointingthesame element. It

represents the termination of procedure.

Element24,whichisthe pivotelementisplacedatitsexact position.

Elementsthatarerightsideofelement24aregreaterthanit,andtheelementsthatareleftsideof element 24 are

smaller than it.

Now,inasimilarmanner,quicksortalgorithmisseparatelyappliedtotheleftandrightsub-arrays. After sorting gets

done, the array will be -

Quicksortcomplexity

Now, let's see the time complexity of quicksort in best case, average case, and in worst case. We will

also see the space complexity of quicksort.

1. TimeComplexity

Case Time Complexity

BestCase O(n*logn)

AverageCase O(n*logn)

WorstCase O(n2)

.

2. SpaceComplexity

Space Complexity O(n*logn)

Stable NO

o Thespacecomplexityofquicksortis O(n*logn).

Implementationof quicksort

Now,let'sseetheprograms ofquicksortin differentprogramming languages.

Program:WriteaprogramtoimplementquicksortinClanguage. #include

<stdio.h>

/*functionthatconsiderlastelement aspivot,

placethepivotatitsexactposition,andplace smaller

elements to left of pivot and greater elements to

right of pivot.*/

intpartition (inta[],intstart, int end)

{

intpivot=a[end];// pivotelement

int i =(start-1);

for(intj =start;j <=end -1;j++)

{

//If currentelementissmallerthanthepivot

if(a[j] < pivot)

{

i++;//incrementindexofsmallerelement

intt=a[i];

a[i] = a[j];

a[j] = t;

}

}

int t = a[i+1];

a[i+1]=a[end];

a[end] = t;

return (i + 1);

}

/*function toimplementquicksort */

voidquick(inta[],intstart, intend)/*a[]=arrayto besorted,start =Starting index,end=Ending index

*/

{

if(start <end)

{

intp=partition(a,start,end);//pisthepartitioningindex

quick(a, start, p - 1);

quick(a,p+1,end);

}

}

/*functiontoprintanarray */

void printArr(inta[],intn)

{

inti;

for(i=0;i<n;i++)

printf("%d", a[i]);

}

int main()

{

inta[]={ 24, 9, 29, 14, 19, 27};

intn =sizeof(a)/ sizeof(a[0]);

printf("Beforesortingarrayelementsare-\n");

printArr(a, n);

quick(a,0,n-1);

printf("\nAftersortingarrayelementsare-\n");

printArr(a, n);

return0;

}

Output:

Heap Sort Algorithm

In this article, we will discuss the Heapsort Algorithm. Heap sort processes the elements by creating the min-heap or max-

heap using the elements of the given array. Min-heap or max-heap represents the ordering of array in which the root

element represents the minimum or maximum element of the array.

Heapsortbasicallyrecursivelyperformstwomainoperations-

o BuildaheapH,usingtheelementsofarray.

o Repeatedlydeletetherootelementoftheheapformedin1stphase.

Beforeknowingmoreabouttheheapsort,let'sfirstseeabriefdescriptionofHeap.

Whatisaheap?

A heap is a complete binary tree, and the binary tree is a tree in which the node can have the utmost two children. A

complete binary tree is a binary tree in which all the levels except the last level, i.e., leaf node, should be completely filled,

and all the nodes should be left-justified.

Whatisheapsort?

Heapsort isapopularand efficient sortingalgorithm.Theconceptofheapsortistoeliminatetheelementsonebyonefrom the heap

part of the list, and then insert them into the sorted part of the list.

Heapsortisthein-placesortingalgorithm. Now,

let's see the algorithm of heap sort.

WorkingofHeapsortAlgorithm

Now,let'sseetheworkingoftheHeapsortAlgorithm.

In heap sort, basically, there are two phases involved in the sorting of elements. By using the heap sort algorithm, they are

as follows -

o Thefirststepincludesthecreationofaheapbyadjustingtheelementsofthearray.

o Afterthecreationofheap,nowremovetherootelementoftheheaprepeatedlybyshiftingittotheendofthe array, and then

store the heap structure with the remaining elements.

Now let's see the working of heap sort in detail by using an example. To understand it more clearly, let's take an unsorted

array and try to sort it using heap sort. It will make the explanation clearer and easier.

First,wehavetoconstructaheapfromthegivenarrayandconvertitintomaxheap.

Afterconvertingthegivenheapintomaxheap,thearrayelementsare-

Next,wehavetodeletetherootelement (89)fromthemaxheap.Todeletethisnode,wehavetoswapitwiththelast node, i.e. (11).

After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement89with11,andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, again, we have to delete the root element(81)from the max heap. To delete this node, we have to swap it

with the last node, i.e. (54). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement81with54andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, we have to delete the root element (76)from the max heap again. To delete this node, we have to swap it

with the last node, i.e. (9). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement76with9andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, again we have to delete the root element (54)from the max heap. To delete this node, we have to swap it

with the last node, i.e. (14). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement54with14andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, again we have to delete the root element (22)from the max heap. To delete this node, we have to swap it

with the last node, i.e. (11). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement22with11andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, again we have to delete the root element (14)from the max heap. To delete this node, we have to swap it
with the last node, i.e. (9). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement14with9andconvertingtheheapintomax-heap,theelementsofarrayare-

In the next step, again we have to delete the root element (11)from the max heap. To delete this node, we have to swap it

with the last node, i.e. (9). After deleting the root element, we again have to heapify it to convert it into max heap.

Afterswappingthearrayelement 11with9,theelementsofarrayare-

Now,heaphasonlyoneelementleft.Afterdeletingit,heapwillbeempty.

Aftercompletionofsorting,thearrayelementsare-

Now,thearrayiscompletelysorted.

Program:WriteaprogramtoimplementheapsortinClanguage.

#include <stdio.h>

/*function toheapifyasubtree.Here'i'isthe

indexofrootnodeinarraya[],and'n'isthesizeofheap.*/ void

heapify(int a[], int n, int i)

{

intlargest=i;//Initializelargestasroot int

left = 2 * i + 1; // left child

intright=2*i+2;//rightchild

//Ifleftchildislargerthan root

if(left<n&&a[left]>a[largest])

largest=left;

//Ifrightchildislargerthanroot

if(right<n&&a[right]>a[largest]) largest =

right;

//Ifrootisnotlargest if

(largest != i) {

//swapa[i]witha[largest] int

temp = a[i];

a[i] = a[largest];

a[largest]=temp;

heapify(a,n,largest);

}

}

/*Functiontoimplementtheheapsort*/ void

heapSort(int a[], int n)

{

for(inti=n/2-1;i>=0;i--) heapify(a, n,

i);

//Onebyoneextractanelementfromheap for

(int i = n - 1; i >= 0; i--) {

/*Movecurrentrootelementtoend*/

//swapa[0]witha[i]

int temp = a[0];

a[0] = a[i];

a[i]=temp;

heapify(a,i,0);

}

}

/*functiontoprintthearrayelements*/ void

printArr(int arr[], int n)

{

for(int i=0;i<n;++i)

{

printf("%d",arr[i]);

printf("");

}

}

intmain()

{

inta[]={48,10,23,43,28,26, 1};

intn =sizeof(a)/ sizeof(a[0]);

printf("Beforesortingarrayelementsare-\n"); printArr(a,

n);

heapSort(a,n);

printf("\nAftersortingarrayelementsare-\n"); printArr(a,

n);

return0;

}

Output

MergeSort Algorithm

In this article, we will discuss the merge sort Algorithm. Merge sort is the sorting technique that follows the divide and

conquerapproach.Thisarticlewillbeveryhelpfulandinterestingtostudentsastheymightfacemergesortasaquestionin their

examinations. In coding or technical interviews for software engineers, sorting algorithms are widely asked. So, it is

important to discuss the topic.

Merge sort issimilar to the quick sort algorithm as it uses the divide andconquer approach to sort the elements. It isoneof

the most popular and efficient sorting algorithm. It divides the given list into two equal halves, calls itself for the twohalves

and then merges the two sorted halves. We have to define the merge() function to perform the merging.

The sub-lists are divided again and again into halves until the list cannot be divided further. Then we combine the pair of

one element lists into two-element lists, sorting them in the process. The sorted two-element pairs is merged into the four-

element lists, and so on until we get the sorted list.

WorkingofMergesortAlgorithm

Now,let'sseetheworkingofmergesortAlgorithm.

To understand the working of the merge sort algorithm, let's take an unsorted array. It will be easier to understand the

merge sort via an example.

Lettheelementsofarrayare-

According to themergesort,firstdividethe given array intotwo equalhalves.Mergesortkeepsdividing thelistinto equal parts

until it cannot be further divided.

Asthereareeightelementsinthegivenarray,soitisdividedintotwoarraysofsize4.

Now,againdividethesetwoarraysintohalves.Astheyareofsize4,sodividethemintonewarraysofsize2.

Now,againdividethesearraystogettheatomicvaluethatcannotbefurtherdivided.

Now,combinetheminthesamemannertheywerebroken.

Incombining,firstcomparetheelementofeacharrayandthencombinethemintoanotherarrayinsortedorder.

So, first compare 12 and 31, both are in sorted positions. Then compare 25 and 8, and in the list of two values, put 8 first

followed by 25. Then compare 32 and 17, sort them and put 17 first followed by 32. After that, compare 40 and 42, and

place them sequentially.

In the next iteration of combining, now compare the arrays with two data values and merge them into an array of found

values in sorted order.

Now,thereisafinalmergingofthearrays.Afterthefinalmergingofabovearrays,thearraywilllooklike-

Now,thearrayiscompletelysorted.

#include<stdio.h>

/*Functiontomergethesubarraysofa[]*/

voidmerge(inta[],intbeg,intmid,intend)

{

inti,j,k;

intn1=mid-beg +1;

intn2=end-mid;

intLeftArray[n1],RightArray[n2];//temporaryarrays

/*copydatatotemparrays*/ for

(int i = 0; i < n1; i++)

LeftArray[i] = a[beg + i];

for (int j = 0; j < n2; j++)

RightArray[j]=a[mid+1+j];

i=0;/*initialindexoffirstsub-array*/

j=0;/*initialindexofsecondsub-array*/

k=beg;/*initialindexofmerged sub-array*/

while(i<n1&&j<n2)

{

if(LeftArray[i]<=RightArray[j])

{

a[k]=LeftArray[i];

i++;

}

else

{

a[k]=RightArray[j];

j++;

}

k++;

}

while(i<n1)

{

a[k]=LeftArray[i];

i++;

k++;

}

while(j<n2)

{

a[k]=RightArray[j];

j++;

k++;

}

}

voidmergeSort(inta[],intbeg,intend)

{

if(beg<end)

{

int mid = (beg + end) / 2;

mergeSort(a, beg, mid);

mergeSort(a,mid+1,end);

merge(a, beg, mid, end);

}

}

/*Functiontoprintthearray*/

voidprintArray(inta[],intn)

{

inti;

for(i=0;i<n;i++)

printf("%d",a[i]);

printf("\n");

}

intmain()

{

inta[]={12,31,25,8,32,17,40, 42};

intn=sizeof(a)/sizeof(a[0]);

printf("Beforesortingarrayelementsare-\n");

printArray(a, n);

mergeSort(a,0,n-1);

printf("Aftersortingarrayelementsare-\n");

printArray(a, n);

return0;

}

Output:

MODULE-5

Patternmatchingalgorithms:

A pattern matching algorithm is used to determine the index positions where a given

pattern string (P) is matchedin a text string (T). It returns "pattern not found"if the pattern does

not match in the text string. For example, for the given string (s) = "packt publisher", and the

pattern (p)= "publisher", the pattern matching algorithm returns the index position wherethe

pattern is matched in the text string.

In this section, we will discuss two pattern matching algorithms, that is, the brute-force

method, as well as Knuth-Morris-Pratt (KMP).

BruteForceApproach:

Bruteforceapproachcanalso becalledasexhaustivesearch. Basically bruteforcemeans you go

through all the possible solutions.

It isone ofthe easiest wayto solve aproblem. But intermsoftimeand spacecomplexity will

take a hit.

WorkingMechanism

 This is simple and efficient brute force approach. It compares the firstcharacter of pattern with

searchable text. If a match is found, pointers in both strings are advanced. If a match is not

found, the pointer to text is incremented and pointer of the pattern is reset. This process is

repeated till the end of the text.

 The naïve approach does not require any pre-processing. Given text Tand pattern P, it directly

starts comparing both strings character by character.

 Aftereachcomparison,itshiftspatternstringonepositiontotheright.

 Followingexampleillustratestheworkingofnaïvestringmatchingalgorithm.Here,T =

PLANINGANDANALYASIS and P = AND

 Here,tiandpjareindicesoftextandpatternrespectively.

Step1:T[1]≠P[1],soadvancetextpointer,i.e.ti++.

Step2:T[2]≠P[1], soadvancetextpointersi.e. ti++

Step3:T[3] =P[1],soadvancebothpointersi.e.ti++, pj++

Step4:T[4] =P[2], soadvancebothpointers,i.e.ti++, pj++

Step5:T[5]≠P[3],soadvancetextpointerand resetpatternpointer,i.e.ti++,pj=1

Step6:T[6] ≠P[1],soadvancetextpointer,i.e. ti++

Step7:T[7]≠P[1],soadvancetextpointeri.e. ti++

Step8:T[8] =P[1], soadvancebothpointers,i.e.ti++, pj++

Step 9:T[9]=P[2],soadvancebothpointers,i.e.ti++, pj++

Step 10:T[10] =P[3], soadvancebothpointers,i.e.ti++,pj++

Algorithm

Algorithmfornaïvestringmatchingapproachisdescribedbelow:

Knuth-Morris-Pratt(KMP)Algorithm:

KMPAlgorithmisoneofthemost popularpatternsmatching algorithms.KMPstandsfor

KnuthMorrisPratt.KMPalgorithmwasinventedby DonaldKnuth and VaughanPratt together and

independently by James H Morris in the year 1970. In the year 1977, all the three jointly

published KMP Algorithm.

KMP algorithm is used to find a "Pattern"in a "Text". This algorithm campares

character by character from left to right. But whenever a mismatch occurs, it uses a preprocessed

table called "Prefix Table"to skip characters comparison while matching. Some times prefix

table is also known as LPS Table. Here LPS stands for "Longest proper Prefix which is also

Suffix".

StepsforCreating LPSTable (PrefixTable):

 Step 1 - Define a one dimensional array with the size equal to the length of the Pattern.

(LPS[size])

 Step2- Definevariables i &j.Seti=0,j=1 andLPS[0]=0.

 Step3-ComparethecharactersatPattern[i]andPattern[j].

 Step 4 - If both are matched then set LPS[j] = i+1 and incrementboth i & j values by one.

Goto to Step 3.

 Step5-Ifbotharenotmatchedthencheckthevalueofvariable'i'.Ifitis'0'then set LPS[j] = 0 and

increment 'j' value by one, if it is not '0' then set i = LPS[i-1]. Goto Step 3.

 Step6-Repeat abovestepsuntilallthevaluesofLPS[]arefilled.

Letususeabovestepstocreateprefixtablefor apattern:

HowtouseLPS Table

WeusetheLPStabletodecidehow manycharactersareto beskipped forcomparisonwhena mismatch

has occurred.

When a mismatch occurs, check the LPS value of the previous character of the mismatched

character inthepattern. Ifit is'0'thenstartcomparingthefirst characterofthepatternwiththe next

character to the mismatched character in the text. If it is not '0' then start comparing the

character which is at an index value equal to the LPS value of the previous character to the

mismatched character in pattern with the mismatched character in the Text.

How theKMPAlgorithm Works

LetusseeaworkingexampleofKMPAlgorithmtofind aPatterninaText...

TheBoyer-MooreAlgorithm

Robert Boyer and J Strother Moore established it in 1977. The B-M String search algorithm is a

particularly efficient algorithm and has served as a standard benchmark for string search algorithmever

since.

The B-M algorithm takes a 'backward' approach: the pattern string (P) is aligned with the start of the

text string (T), and then compares the characters of a pattern from right to left, beginning with

rightmost character.

If a character is compared that is not within the pattern, no match can be found by analyzing any

further aspects at this position so the pattern can be changed entirely past the mismatching character.

For deciding the possible shifts, B-M algorithm uses two preprocessing strategies simultaneously.

Whenever a mismatch occurs, the algorithm calculates a variation using both approaches and selects

the more significant shift thus, if make use of the most effective strategy for each case.

Thetwostrategiesarecalledheuristics ofB-Mastheyareused toreducethesearch.Theyare:

1. BadCharacter Heuristics

2. GoodSuffix Heuristics

1. BadCharacter Heuristics

ThisHeuristicshastwo implications:

o Suppose there is a character in a text in which does not occur in a pattern at all. When a

mismatch happens at thischaracter (called as bad character), the whole pattern can be changed,

begin matching form substring next to this 'bad character.'

o On the other hand, it might be that a bad character is present in the pattern, in this case, align

the nature of the pattern with a bad character in the text.

Thusin any caseshiftmay behigherthan one.

Example1:LetText T=<nyoonyoo>andpatternP=<noyo>

Example2:Ifabad characterdoesn't exist the pattern then.

ProbleminBad-Character Heuristics:

Insomecases,Bad-CharacterHeuristicsproducessomenegativeshifts. For

Example:

This means that we need some extra information to produce a shift on encountering a bad character.

This information is about the last position of every aspect in the pattern and also the set of characters

used in a pattern (often called the alphabet ∑of a pattern).

COMPUTE-LAST-OCCURRENCE-FUNCTION(P,m,∑)

1. foreachcharactera∈∑

2. doλ [a] =0

3. forj ← 1 to m

4. doλ[P[j]]← j

5. Returnλ

2. Good SuffixHeuristics:

A good suffix is a suffix that has matched successfully. After a mismatch which has a negative shift in

bad characterheuristics, look ifasubstringofpatternmatched till bad character has agood suffixin it, if it

is so then we have an onward jump equal to the length of suffix found.

Example:

TRIES

A trie is a tree-like information retrieval data structure whose nodes store the letters of an alphabet. It is
also known as a digital tree or a radix tree or prefix tree. Tries are classified into three categories:

1. StandardTrie
2. CompressedTrie
3. SuffixTrie
Standard TrieA standard trie have the following properties:

A Standard Trie has the below structure:

classNode{

// Array to store the nodes of a tree

Node[] children = new Node[26];

// To check for end of string

boolean isWordEnd;

}

 Itisanorderedtreelikedatastructure.

 Eachnode(excepttherootnode)inastandardtrieislabeledwithacharacter.

 Thechildrenofanodeareinalphabeticalorder.

 Eachnodeorbranchrepresentsapossiblecharacterofkeysorwords.

 Eachnodeorbranchmayhavemultiplebranches.

 Thelastnodeofeverykeyorwordisusedtomarktheendofwordornode.

 BelowistheillustrationoftheStandardTrie:

Compressed TrieA Compressed trie have the following properties:
A Compressed Trie has the below structure:

classNode{

// Array to store the nodes of tree

https://www.geeksforgeeks.org/trie-insert-and-search/
https://www.geeksforgeeks.org/pattern-searching-using-suffix-tree/compressed-trie-2/
https://www.geeksforgeeks.org/pattern-searching-using-suffix-tree/
https://www.geeksforgeeks.org/combinatorics-ordered-trees/
https://media.geeksforgeeks.org/wp-content/uploads/20200413192323/Trie1.jpg

Node[] children = new Node[26];

//TostoretheedgeLabel

StringBuilder[]edgeLabel=newStringBuilder[26];

// To check for end of string boolean

isEnd;

}

 ACompressedTrieisanadvancedversionofthestandardtrie.

 Eachnodes(excepttheleafnodes)haveatleast2children.

 Itisusedtoachievespaceoptimization.

 To derive a Compressed Trie from a Standard Trie, compression of chains of redundant nodes is
performed.

 Itconsistsofgrouping,re-groupingandun-groupingofkeysofcharacters.

 While performing the insertion operation, it may be required to un-group the already grouped
characters.

 While performing the deletion operation, it may be required to re-group the already grouped
characters.

 A compressed trie T storing s strings(keys) has s external nodes and O(s) total number of
nodes.

 BelowistheillustrationoftheCompressedTrie:

Suffix TrieA Suffix trie have the following properties:
A Compressed Trie has the below structure:

structSuffixTreeNode{

//Arraytostorethenodes

structSuffixTreeNode*children[256];

//pointer to other node via suffix link

struct SuffixTreeNode *suffixLink;

https://media.geeksforgeeks.org/wp-content/uploads/20200413192317/CompressedTrie.jpg

//(start,end)intervalspecifiestheedge,

//bywhichthenodeisconnectedtoits

// parent node

int start;

int*end;

//Forleafnodes,itstorestheindexof

// Suffix for the pathfrom root to leaf int

suffixIndex;

}

 ASuffixTrieisanadvancedversionofthecompressedtrie.

 ThemostcommonapplicationofsuffixtrieisPatternMatching.

 Whileperformingtheinsertionoperation,boththewordanditssuffixesarestored.

 Asuffixtrieisalsousedinwordmatchingandprefixmatching.

 Togenerateasuffixtrie,allthesuffixesofgivenstringareconsideredasindividualwords.

 Usingthesuffixes,compressedtrieisbuilt.

 BelowistheillustrationoftheSuffixTrie:

https://www.geeksforgeeks.org/pattern-searching-using-suffix-tree/

https://media.geeksforgeeks.org/wp-content/uploads/20200413192511/SuffixTrie.jpg

	Introduction:
	TypesofDataStructures:
	Primitivedatastructure
	Non-primitivedatastructure
	.AbstractDataTypes:
	SinglyLinkedList operations:
	Insertion
	Algorithm:
	Algorithm: (1)
	STACKS:
	PushOperation:
	PopOperation:
	PeekOperation:
	OperationsonaQueue:
	Display():
	QueueimplementationbyUsingArray:
	EnQueueOperation:
	DeQueueOpeartion:
	Deletedelement=12

	LINKEDREPRESENTATIONOFQUEUES:
	DeQueue():
	Display():
	WorkingoftheSkiplist
	SkipListBasicOperations
	AdvantagesoftheSkiplist
	DisadvantagesoftheSkiplist
	Searching:
	Insertion:
	h(K)=kmodM
	h(K)= h(kxk)
	k=k1,k2,k3,k4,…..,kn
	h(K)=floor(M(kAmod1))

	MODULE-3 TREES
	BasicTerminology:
	Terminology:
	TreeTraversals(Inorder,PreorderandPostorder):
	BasicOperationsofRed-BlackTrees
	BasicOperationsofSplayTrees

	MODULE-4 GRAPHS
	QuickSort Algorithm
	Heap Sort Algorithm
	Whatisaheap?
	Whatisheapsort?
	WorkingofHeapsortAlgorithm

	MergeSort Algorithm
	WorkingofMergesortAlgorithm
	MODULE-5

	TheBoyer-MooreAlgorithm

